Both images have $\boldsymbol{n}=\mathbf{8}$ and $\boldsymbol{S} \mathbf{= 3 0}$. One is a single-jump the other a double-jump image
Q1: How do these images differ from one another and why? What are the jump patterns in each? Fact: Both values of \boldsymbol{P} are such that the image is a single line when \boldsymbol{P} is one larger than this value. Q2: What are the values of \boldsymbol{P} in each instance?
Q3: What would each image look like if $\boldsymbol{P}_{\text {new }}=\boldsymbol{P}+2$ instead of \boldsymbol{P} ?

All three images have $S=20, P=23$, and $\mathrm{J}_{1}=1$

Q1: What are the values of \boldsymbol{J}_{2} and \boldsymbol{n} for each image?
Q2: What is the degree of rotational symmetry in each panel?
Q3: Which version of File 4 must have been used to create one or more of these models? Which one(s) and why?

Both images have $\boldsymbol{n}=\mathbf{8}, \boldsymbol{S}=\mathbf{2 0}$ and $\mathrm{P}=\mathbf{1 1}$. One uses File 3, the other uses File 4.
Q1: Which image used File 3, and which used File 4? How do you know which is which? Q2: What would you do to \boldsymbol{P} in the left image to make it more like the right image?

Both images have $\boldsymbol{n}=\mathbf{1 0}$, one has 390 lines, the other 400 . One uses File 3, the other File 4.
Q1: Which image used File 3, and which used File 4? How do you know which is which?
Q2: What are \boldsymbol{J}_{1} and \boldsymbol{J}_{2} in the file 4 version of this 10-point flower?
Q3: Suppose VCF = 1 and $\boldsymbol{S C F}=1$. What is \boldsymbol{S} in each image? (Hint: You do not need to manually count segments along the vertex frame to answer this question.)

