Additional Image Detective Strategies

More Things to notice (beyond 1-10)
11. If you can see a structure that repeats itself, you may benefit by restricting the analysis to a portion of the image.
\boldsymbol{n} is a multiple of the number of times it repeats itself.
12. If there are \boldsymbol{k} levels of interior subdivision points shown, then \boldsymbol{S} is likely $\mathbf{2 k}$ or $\mathbf{2 k + 1}$. The reason is that the end of the first subdivision and the start of the last subdivision on a segment of the vertex frame are at the same level. The same goes for second and $2^{\text {nd }}$ to last, and so on. Therefore
$\boldsymbol{S}=2$ and $\boldsymbol{S}=3$ produce a single level,
$\boldsymbol{S}=4$ and 5 produce 2 levels.
$\boldsymbol{S}=6$ and 7 produce 3 levels, and so on.
13. If you can count the number of segments in a structure that repeats itself, that provides an indication of \boldsymbol{S}.

Consider the images to the right called Top, Middle, Bottom
a. Top repeats itself 5 times. Middle repeats itself 10 times and Bottom repeats itself 11 times.
b. (Green) The Top image has subdivision points at 3 levels.

This means \boldsymbol{S} is likely 6 or 7 for Top. Counting the number of segments in $1 / 5$ of the whole is 7 so $\boldsymbol{S}=7$. Middle has 4 subdivision levels as does Bottom so both are $\boldsymbol{S}=8$ or 9. Counting from peak to peak confirms that $\boldsymbol{S}=8$ in Middle, but Bottom is harder to count that way.
c. (Red) Checking the lines drawn for Top if $\boldsymbol{n}=5$ and $\boldsymbol{J}=1$ or 2 suggest that $\mathbf{n}>5$ must be true (as none of the internal vertices are on those lines). But $\boldsymbol{n}=10, \boldsymbol{J}=3$ coincides with all three levels of subdivisions. Note that these three points are not equally spaces on the line. This confirms that $\boldsymbol{S}=7$ for Top with subdivision endpoint not used noted in blue on this first line of the vertex frame.

By contrast, Middle and Bottom have a J that coincides with each level of the image so that $\boldsymbol{n}=10, \boldsymbol{J}=3$ for Middle and $\boldsymbol{n}=11, \boldsymbol{J}=4$ for Bottom. Equal spacing of subdivisions along first line of the vertex frame confirms that both images are $\boldsymbol{S}=8$.

Continue the vertex frame in each case to find \boldsymbol{P} (labelled $\mathbf{1}$). The $3^{\text {rd }}$ subdivision on the $4^{\text {th }}$ line of the vertex frame is the first point in the $\operatorname{Top}\left(\boldsymbol{P}=24=3^{*} 7+3\right.$). The $3^{\text {rd }}$ subdivision on the $4^{\text {th }}$ line of the vertex frame is the first point in the Middle ($\boldsymbol{P}=27=3^{*} 8+3$) Finally, the $3^{\text {rd }}$ part of the $6^{\text {th }}$ line of the vertex frame is the first point in the Bottom image ($\boldsymbol{P}=43=5^{*} 8+3$).
Click below then click Toggle Drawing to see Bottom drawn.

https://www.playingwithpolygons.com?vertex=11\&subdivisions=8\&points=43\&jumps=4

