Symmetry about $\boldsymbol{n}^{*} S / \mathbf{2}$ and the number of distinct images as a function of \boldsymbol{P}

Porcupine images are created when \boldsymbol{P} is the largest number less than (or smallest number larger than) $\boldsymbol{n} * \boldsymbol{S} / 2$. The images are identical above and below $\boldsymbol{n} * \boldsymbol{S} / 2$ as long VCF $=\operatorname{GCD}(\boldsymbol{J}, \boldsymbol{n})=1$. If VCF >1, then the same is true for \boldsymbol{P} above and below $\left(\frac{n}{\mathbf{V C F}}\right) * \boldsymbol{S} / 2$. In general, if this is an integer, $\boldsymbol{P}=\left(\frac{n}{\mathbf{V C F}}\right) * \boldsymbol{S} / 2$ is a vertical line.

The vertex frame occurs if \boldsymbol{P} is a factor of \boldsymbol{S} because each line in the frame is created using one or more segments. (If $\boldsymbol{S}=12$, six \boldsymbol{P} values produce the vertex frame ($\boldsymbol{P}=1,2,3,4,6$, and 12). Let $N_{\text {FACTORS }}(S)$ be the number of factors of a number \boldsymbol{S} (including 1 and \boldsymbol{S}). Each of these factors will produce a single image (the vertex frame). As a result, there are $\operatorname{INTEGER}\left(\left(\frac{n}{V C F}\right) * S / 2\right)-N_{\text {FACTORS }}(\boldsymbol{S})+1$ distinct images. Below are 8 of 9 distinct images given $\boldsymbol{S}=6, \boldsymbol{J}=1$ and $\boldsymbol{n}=4$.

$P=1,2,3$, and 6

$\boldsymbol{P}=8$

$P=4$

$P=10$

The final image, $\boldsymbol{P}=12$, is a vertical line. There are 9 distinct images because $\operatorname{INTEGER}\left(\left(\frac{n}{V C F}\right) * \boldsymbol{S} / 2\right)-\operatorname{N}_{\text {FACTORS }}(\boldsymbol{S})+1=\operatorname{INTEGER}((4 / 1) * 6 / 2)-4+1=9$.

