Odd Needle Stars

Needle stars are stars that are created with very sharp points. These points are sharper than you can get by setting $\boldsymbol{S}=\boldsymbol{P}$. Three rows are shown here (5, 7 and 11 point stars) with three versions in each row. Each column has the same $\boldsymbol{S}, \boldsymbol{P}, \boldsymbol{J}$, and \boldsymbol{n} attributes as noted at the top of each column.

$$
S=2, P=3, J=(n-1) / 2, n=\text { point }
$$

Lines per image: 2^{*} point

$S=2, P=3, J=(n-1) / 2, n=3 *$ point 2*point

$S=3, P=4, J=(n-1) / 2, n=p o i n t$
3*point

The needles get sharper in going from left to right in a row, and as the number of points increases, so does the sharpness of individual points in a given column. It appears that the bottom left 11-star is no sharper than the version drawn with 11 rather than 22 lines. But a quick check confirms that the angles are sharper here than you scroll \boldsymbol{S} up one so that $\boldsymbol{S}=\boldsymbol{P}=3$. Notice that the structure of each star first two columns is within each "leg" of the star, but in the third column there is a framework that extends beyond these legs.

A couple of questions to ponder: Can you find examples of even pointed needle stars? If so, can you determine rules such as those above that produce even point stars?

