Porcupine Stars versus Polygons

(Porcupine images are created when \boldsymbol{P} is the largest number less than (or smallest number larger than) $\boldsymbol{n} \boldsymbol{*} \boldsymbol{S} / \mathbf{2}$)

The pentagonal porcupine polygon on the left has the same $\boldsymbol{S}, \boldsymbol{P}$, and \boldsymbol{n} as the image on the right but the image on the right is based on a pentagram $(\boldsymbol{J}=2)$. Now many of the needles are pointing inward leading to an upside down pentagon of "empty" space. The two examples below show $\boldsymbol{S}=29$.

Multiple jump models do not always lead to images using all of the vertices. The image uses fewer vertices if \boldsymbol{n} and \boldsymbol{J} have factors in common. (See the discussion of VCF, the vertex common factor, for further detail.) This is the reason that one cannot create a continuously drawn 6 point star. But one can create two distinct 7 point stars ($J=2$ and 3), one 8 point star ($J=3$), and two 9 point stars ($J=2$ and 4). (The word distinct was used because each of those solutions can be seen using two values of $\boldsymbol{J}<\boldsymbol{n}$ since the same image results for \boldsymbol{J} and $\boldsymbol{n} \boldsymbol{- J} \boldsymbol{J}$ jumps.)

Versions of each of these models are shown on the next page. The number of subdivisions between connected vertices has been reduced to $S=19$ because the images are smaller in size in order to fit 6 on one page. The images are widely varied, but they all contain sharp points at subdivision endpoints.

The first two on the top row are $\boldsymbol{n}=7$, the third is $\boldsymbol{n}=8$ and the bottom three all are based on $\boldsymbol{n}=9$. You should be able to explain what happened to the other vertices in the middle image given $\boldsymbol{J}=3$. One can see the commonality between the two left images and the right image on the page 1 : each has $\boldsymbol{J}=2$ and \boldsymbol{n} odd.

This is a link to the companion website for the last of these images: https://www.playingwithpolygons.com?vertex=9\&subdivisions=19\&points=85\&jumps=4

