On finding the smallest values of $\boldsymbol{S}, \boldsymbol{P}, \boldsymbol{J}$, and \boldsymbol{n} that creates an image

In order to make analysis easier, it is generally worthwhile to adjust parameters so that VCF and SCF are as small as possible and to decrease \boldsymbol{J} and \boldsymbol{P} so that they are as small as possible. It will not always be possible to have both VCF $=1$ and $\mathbf{S C F}=1$, but it will make understanding how the image was created easier if you follow these suggestions. [Mathematically, VCF $=\operatorname{GCD}(\boldsymbol{n}, \boldsymbol{J})$ and $\operatorname{SCF}=\operatorname{GCD}\left(\boldsymbol{S}^{*}(\boldsymbol{n} / \mathbf{V C F}), \boldsymbol{P}\right)$.]

An Example: Suppose you want to understand a bit more about the image at right. This was created by the Initial settings of $\boldsymbol{S}=8, \boldsymbol{P}=30, \boldsymbol{J}=9$ and $\boldsymbol{n}=15$. You would like to know how this was created.

In this instance, VCF $=3$ and $\mathbf{S C F}=10$ so the first thing to do is to divide \boldsymbol{n} and \boldsymbol{J} by 3 , and \boldsymbol{S} and \boldsymbol{P} by 2 giving $\boldsymbol{S}=4, \boldsymbol{P}=15, \boldsymbol{J}=3$ and $\boldsymbol{n}=5$. The same image emerges but now VCF $=1$ and $\mathbf{S C F}=5$.

One cannot reduce \boldsymbol{n} and \boldsymbol{P} by the common factor of 5 without doing damage to the image ($\boldsymbol{n}=1$ results).
 But you can obtain the same image by making further adjustments to decrease the size of \boldsymbol{J} and \boldsymbol{P}.

Let $\boldsymbol{J}=\boldsymbol{n}-3=2$ (since then \boldsymbol{J} is, clockwise, less than half-way around), and similarly, $\boldsymbol{P}=\boldsymbol{S}^{*}(\boldsymbol{n} / \mathrm{VCF})-15=5$. The Final version, $\boldsymbol{S}=4, \boldsymbol{P}=5, \boldsymbol{J}=2$ and $\boldsymbol{n}=5$, will be easier to count.

To see the difference, compare the two images from the companion website. Click Show Subdivisions and Show Vertices to obtain the images below. There are twice as many subdivision points and three times as many vertices on the left than the right.

Initial, LEFT: https://www.playingwithpolygons.com?vertex=15\&subdivisions=8\&points=30\&jumps=9
To draw the first line: The $30^{\text {th }}$ subdivision (endpoint of the $1^{\text {st }}$ segment) is on the $4^{\text {th }}$ line of the vertex frame since $30=3^{*} 8+6$. The first 3 segments of the vertex frame go from vertex 0 to 9 to 3 to 12 and the $6^{\text {th }}$ subdivision point on the line going from vertex 12 to vertex 6 is the endpoint of the first segment in the final image.

Final, RIGHT: https://www.playingwithpolygons.com?vertex=5\&subdivisions=4\&points=5\&jumps=2
To draw the first line: The $5^{\text {th }}$ subdivision (endpoint of the $1^{\text {st }}$ segment) is the first subdivision on the second line segment since $5=1 * 4+1$. The first vertex frame segment goes from vertex 0 to 2 and the second goes from 2 to 4 .

Both methods produce the same image, but the one on the right is easier to follow.

$1 / 3$ of vertices used $(\mathrm{VCF}=3) \& 1 / 10^{\text {th }}$ subdivisions ($\mathrm{SCF}=10$)

All vertices used (VCF=1) \& $1 / 5^{\text {th }}$ subdivisions used ($\mathbf{S C F}=5$)

