Stacked Circles, Take 3: Variations on the Theme

Stacked circles, as initially conceptualized, required four things:

1) odd n,
2) $J=(n-1) / 2$,
3) even S, and
4) \boldsymbol{P} is just-under an even multiple of $\boldsymbol{S}, \boldsymbol{P}=2 \boldsymbol{k} \boldsymbol{S}-1$.

The resulting images have cycles that loop around the center of the circle. This creates an image with a tight-closed circle for the inner-most layer and cross-hatching that does not extend into neighboring layers.
a) What happens when we relax each of these conditions without changing the other conditions ?
b) Can we find alternative conditions that produce versions of stacked circles?

Question a) We start from the 3 layer image annotated in Stacked Circles, Take 1, (S, P, J, n)=(6, 35, 11, 23), shown to the left, and change each condition.

138 lines $(S, P, J, n)=(6,35,11,24)$

144 lines $(S, P, J, n)=(6,35,10,23)$

1a) Changing to even \boldsymbol{n} produces significant overlap between layers even though the images are One Layer Change images. For example, changing $\boldsymbol{n}=23$ to 24 (middle image above) produces two levels of cross-hatching as well as a circle that is noticeably inside the subdivision vertices creating each layer (click this url and click Subdivisions to see):

> https://www.playingwithpolygons.com?vertex=24\&subdivisions=6\&points=35\&jumps=11

2a) Changing J to a value further away from the center (from 11 to 10 given $\boldsymbol{n}=23$, right image above) produces even greater amounts of apparent movement across levels (note that the image in this instance is more star-like).
https://www.playingwithpolygons.com?vertex=23\&subdivisions=6\&points=35\&jumps=10
3a) Changing \boldsymbol{S} to the next larger or smaller number (7 or 5) reduces the image to a simple star because the value of \boldsymbol{P} (35) is a multiple of both. But, to be fair, \boldsymbol{P} was defined as a function of \boldsymbol{S}. If we maintain the relationship, $\boldsymbol{P}=6 \boldsymbol{S}-1$, then the nearest odd choices are $\boldsymbol{S}=5, \boldsymbol{P}=29$ or $\boldsymbol{S}=7, \boldsymbol{P}=41$, both of which produce images that could be mistaken as stacked circles. Both versions are provided here:
https://www.playingwithpolygons.com?vertex=23\&subdivisions=5\&points=29\&jumps=11
https://www.playingwithpolygons.com?vertex=23\&subdivisions=7\&points=41\&jumps=11
Careful viewing of Toggle Drawing shows that in both instances, the loops no longer include the center.
4a) Changing \boldsymbol{P} to the just-over even multiple of $\boldsymbol{S}, \boldsymbol{P}=2 \boldsymbol{k} \boldsymbol{S}+1$, produces images that are also quite similar to stacked circles. But note that, as with 3 a), the loops no longer contain the center.
https://www.playingwithpolygons.com?vertex=23\&subdivisions=6\&points=37\&jumps=11

Question b) We see that odd \boldsymbol{S} and just-over \boldsymbol{P} both produce alternative versions of stacked circles. It remains to be seen if we can find a version of stacked circles for even \boldsymbol{n} and for $\boldsymbol{J}<(\boldsymbol{n}-1) / 2$.

1b) If we combine an even \boldsymbol{n} with a just-over odd multiple of \boldsymbol{S} (here is $\boldsymbol{P}=6^{*} 9+1$) we obtain a credible version of stacked circles. The loop includes the center even though \boldsymbol{P} is a just-over value. Just-under does not work quite as well here (try $\boldsymbol{P}=53$ and note that the center is no longer included).
https://www.playingwithpolygons.com?vertex=24\&subdivisions=6\&points=55\&jumps=11
2b) Changing to $\boldsymbol{J}=10$ requires a larger \boldsymbol{P} to create the loop required to make the stacked circle image. The best version here is $\boldsymbol{P}=53$ which, as just-noted, is just-under $9 \boldsymbol{S}$. The 6 -segment loop in this instance only rotates 1 vertex over for each time (click Toggle Drawing to see this progression).
https://www.playingwithpolygons.com?vertex=23\&subdivisions=6\&points=53\&jumps=10
Notice that the loops now include the center (unlike in $\mathbf{1 b}$) with \boldsymbol{P} just-below.
We see that the class of images that might be considered stacked circles is wider than initially conceptualized. All images are One Level Change images, but the 4 restrictions initially imposed need not apply.

