Challenge Questions to consider:

1. Fix J at some small value larger than 1 (like $2,3,4,5$ or 6). Then set n to $\mathrm{J}+\mathrm{J}$.

Notice that the image has $1 / \mathrm{J}$ fraction of vertices used and the image is a line segment.
The next larger n that uses $1 / J$ is J more than $J+J$. and how the image is a triangle.
This pattern repeats every J units and the resulting image is a larger and larger polygon.
2. Set $\mathrm{n}=7$ and $\mathrm{J}=1$. Increase J and see when you find that pattern once again.

Do the same for $\mathrm{n}=7$ and $\mathrm{J}=2$. Then do it one more time for $\mathrm{n}=7$ and $\mathrm{J}=3$.
Can you explain why the same image exists for two values of J for any n ?
Hint: All images are symmetric about the vertical line and the image can be drawn starting in a clockwise or counterclockwise fashion.
3. Set $\mathrm{J}>\mathrm{n}$, like $\mathrm{J}=8$ and $\mathrm{n}=7$. Can you find a similar image with $\mathrm{J}<\mathrm{n}$?
4. Set $\mathrm{n}<25$ and find a J that gives an image you like.

Find a value of $\mathrm{n}>25$ that produces the same image.
5. Set $\mathrm{n}<17$ and find a J that gives an image you like.

Find two more values of $n>17$ that produces the same image.
6. Set $\mathrm{n}<13$ and find a J that gives an image you like.

Find three more values of $n>13$ that produces the same image.

