Where the $1^{\text {st }}$ Cycle ends tells us how the Image is Filled In

Finding E. If the first cycle ends at the top, the image is complete. In all other circumstances, there will be multiple cycles to complete the circuit (or image). There are \boldsymbol{C} lines per cycle, and each line is created by counting out \boldsymbol{P} subdivisions on the vertex frame. But note that a polygonal vertex occurs every \boldsymbol{S} subdivisions on the vertex frame and, by construction, this point is J polygonal vertices away from the 0 , the top of the parent polygon. Putting all of this together, we see that the endpoint of the first cycle, \mathbf{E}, is:

$$
\boldsymbol{E}=\operatorname{MOD}\left(\frac{\boldsymbol{C} * \boldsymbol{P}}{\boldsymbol{S}} * J, \boldsymbol{n}\right) \text { where MOD is the remainder upon division by } \boldsymbol{n} .
$$

The image will appear to add polygonal vertices to the image in a \circlearrowright (clockwise) direction if $\boldsymbol{E}<\boldsymbol{n} / 2$ because the $2^{\text {nd }}$ endpoint will be at $2 \boldsymbol{E}<\boldsymbol{n}$.

If $\boldsymbol{E}>\boldsymbol{n} / 2$, the polygonal vertices appear to be added to the image in a \mathcal{U} (counterclockwise) direction because $\operatorname{MOD}(2 E, n)<E$.

An Example: Consider two ways of drawing the image to the right. Quite clearly, $\boldsymbol{S}=3$ and $\boldsymbol{n}=4$. \boldsymbol{J} can be either 1 or 3 , let $\boldsymbol{J}=1$. The first cycle must start at the top so the end of the first segment in the cycle is the last subdivision before vertex 2 or the first subdivision after vertex 2 on the vertex frame. Simple counting suggests that $\boldsymbol{P}=5$ or $\boldsymbol{P}=7$ and $\boldsymbol{C}=3$.

$\boldsymbol{P}=5$: Then $\boldsymbol{E}=\operatorname{MOD}\left(3^{*} 5 / 3,4\right)=1$ and polygonal vertices are added in a \cup direction from 1 to 2 to 3 to $4 \& 0$.
$\boldsymbol{P}=7$: Then $\boldsymbol{E}=\operatorname{MOD}\left(3^{*} 7 / 3,4\right)=3$ and polygonal vertices are added in a \mathcal{U} direction from 3 to 2 to 1 to $4 \& 0$.
Finally, if $\boldsymbol{E}=\boldsymbol{n} / 2$ the image will have two and only two cycles which are mirror images of one another. This occurs because the second cycle ends at the top of the parent polygon: $0=\operatorname{MOD}(2 E, n)$ if $E=n / 2$. The hexagonal image to the right has the same S, \boldsymbol{n}, and \boldsymbol{J} as above but now $\boldsymbol{P}=2$ or $\boldsymbol{P}=10$.
$\boldsymbol{P}=2$: Then $\boldsymbol{E}=\operatorname{MOD}\left(3^{*} 2 / 3,4\right)=2$ and the $1^{\text {st }}$ cycle is the right half of the image.
$\boldsymbol{P}=10$: Then $\boldsymbol{E}=\operatorname{MOD}\left(3^{*} 10 / 3,4\right)=2$ and the $1^{\text {st }}$ cycle is the left half of the image.
In both instances, the second cycle completes the image.
How \boldsymbol{E} tells us how the image is filled in. The size of \boldsymbol{E} relative to the number of cycles
 in the image, \boldsymbol{M}, tells us how many times around the parent polygon vertices the drawing must lay down cycles to fill in the image. For example, this image has $\boldsymbol{E}=3$ with 29 cycles and $\boldsymbol{n}=29$ so it takes $3 \boldsymbol{x}$-around to fill in vertices 1 and 2 .
Click Toggle Drawing: https://www.playingwithpolygons.com?vertex=29\&subdivisions=12\&points=224\&jumps=13.
By contrast, this $\boldsymbol{E}=4$ image is a $2 x$-around image since the number of cycles, $\boldsymbol{M}=15$, so only half the vertices are points on the image: https://www.playingwithpolygons.com?vertex=30\&subdivisions=3\&points=58\&jumps=13 .

More generally, the number of times around the parent polygon vertices one must travel to fill in the image, \boldsymbol{T}, is given by an equation that depends on whether those additions are counter-clockwise ($\boldsymbol{E}>\boldsymbol{n} / 2$) or clockwise ($\boldsymbol{E}<\boldsymbol{n} / 2$):

Times around to fill in the image, $T=\operatorname{IF}(E>n / 2,(n-E) /(n / M), E /(n / M))$.
$1 x$-around images. If $\boldsymbol{T}=1$, then the image is created in a series 1 used-vertex changes around the parent polygon. This may involve a large number of rotations about the vertex frame, but the cycle moves one used-vertex at a time. Additionally, if $\boldsymbol{n}=\boldsymbol{M}$, the images is drawn 1 vertex at a time. The way such images are drawn can be quite dramatic:

U because $\boldsymbol{E}=1: \quad$ https://www.playingwithpolygons.com?vertex=30\&subdivisions=11\&points=127\&jumps=13
\boldsymbol{J} because $\boldsymbol{E}=\boldsymbol{n}-1$:
https://www.playingwithpolygons.com?vertex=30\&subdivisions=12\&points=233\&jumps=13

