Role of J in Shape-shifting Polygons: Compare the first cycle from $J=1$ with $J=2$ for $\boldsymbol{n}=\boldsymbol{S}=5, \boldsymbol{P}=(\boldsymbol{n} * \boldsymbol{S}-1) / 3=(25-1) / 3=8$.

The above images show the first $\boldsymbol{S}=5$ length cycle (from polygonal vertex to polygonal vertex) for two images, both of which are created with 25 lines ($\boldsymbol{n} * \boldsymbol{S}=25$). Both images have 5 cycles. All points in each first cycle are noted. Both images are shape-shifting triangles. The first cycle ends at vertex 3 on the left so that subsequent cycles end at pentagon vertices $1,4,2$, with final cycle ending at $5 \& 0$. The right is a clockwise-one-time-around image (first cycle ends at vertex 1).

Both cycles have about "two triangles" since $S=5=\mathbf{2}^{* 3} \mathbf{- 1}$. As Jincreases (from left image to right image), the shape-shifting attribute becomes more acute. The best way to see this is to watch as lines are added to create each image. To see the image emerge, click Toggle Drawing after connecting to the link below:

The left image subdivision endpoints in the first cycle are successive points on three lines of the vertex frame. The points denoted 0,3 are on the fifth vertex frame line from vertex 4 to $5 \& 0$. Points denoted 1,4 are on the second vertex frame line from vertex 1 to 2 . Points denoted 2,5 are on the fourth vertex frame line from vertex 3 to 4 . https://www.playingwithpolygons.com?vertex=5\&subdivisions=5\&points=8\&jumps=1

The right image subdivision endpoints in the first cycle are successive points on three lines of the vertex frame. The points denoted 0,3 are on the fifth vertex frame line from vertex 3 to $5 \& 0$. Points denoted 1,4 are on the second vertex frame line from vertex 2 to 4 . Points denoted 2,5 are on the fourth vertex frame line from vertex 1 to 3 . https://www.playingwithpolygons.com?vertex=11\&subdivisions=7\&points=26\&jumps=5

