Shape-shifting Polygons: Comparing the first cycle from $n=7, S=11$ with $n=11, S=7$ for $\boldsymbol{P}=(\boldsymbol{n} * \boldsymbol{S}+1) / 3=26 ; \boldsymbol{J}=(\boldsymbol{n}-1) / 2$.

The above images show the first \boldsymbol{S}-length cycle (from polygonal vertex to polygonal vertex) for two images, both of which are created with 77 lines ($\boldsymbol{n} * \boldsymbol{S}=77$). The left image has 7 cycles of 11 and the right image has 11 cycles of 7 . All points in each first cycle are noted. Both images are shape-shifting triangles. The left is a clockwise-one-time-around image (first cycle ends at vertex 1). The right is a counterclockwise-two-times-around image (first cycle ends at vertex 9).

Each cycle has different numbers of "triangles" since $S=4 * 3-1=11$ on left and $S=2 * 3+1=7$ on the right. The left image has about 4 triangles and the right has about 2. To watch the shape-shifting triangles create each image, click Toggle Drawing after connecting to each link below:

The left image subdivision endpoints in the first cycle are successive points on three lines of the vertex frame. The points denoted $0,3,6,9$ are on the first vertex frame line from vertex 0 to 3 . Points denoted $1,4,7,10$ are on the third vertex frame line from vertex 6 to 2 . Points denoted $2,5,8,11$ are on the fifth vertex frame line from vertex 5 to 1 . https://www.playingwithpolygons.com?vertex=7\&subdivisions=11\&points=26\&jumps=3

The right image subdivision endpoints in the first cycle are successive points on three lines of the vertex frame. The points denoted $0,3,6$ are on the first vertex frame line from vertex 0 to 5 . Points denoted $1,4,7$ are on the fourth vertex frame line from vertex 4 to 9 . Points denoted 2,5 are on the eighth vertex frame line from vertex 2 to 7 . https://www.playingwithpolygons.com?vertex=11\&subdivisions=7\&points=26\&jumps=5

