Shape-shifting Polygons: Comparing the first cycle from $n=11, S=13$ with $n=13, S=11$ for $P=(n * S+1) / 3=48 ; J=(n-1) / 2$.

The above images show the first S-length cycle in red (from polygonal vertex to polygonal vertex) for two 143 -line images ($\boldsymbol{n} * \boldsymbol{S}=143$). The left image has 11 cycles of 13 and the right image has 13 cycles of 11. Every third point is noted as is the cycle end. Both images are shape-shifting triangles. The left is a counterclockwise-two-times-around image (first cycle ends at vertex 9). The right is a clockwise-two-times-around image (first cycle ends at vertex 2).

Both images have "about" 4 "triangles" per cycle since $S=4^{*} 3 \pm 1$. An easy way to see the "four-ness" of the triangles in each cycle is to note that there are 4 triangle bottoms which are successive points on a single vertex frame line (shown in blue) in each image. To watch the triangles create each image, click Toggle Drawing after connecting to each link below:

The left image bottoms are on the $8^{\text {th }}$ line of the vertex frame from vertex 2 to vertex 7 (note: $J=5$ and $S=13$ here) with point $2,5 / 13$ of the way from vertex 2 to vertex 7 (note: $2^{*} 48=96=7 * 13+5$). https://www.playingwithpolygons.com?vertex=11\&subdivisions=13\&points=48\&jumps=5

The right image bottoms are on the $5^{\text {th }}$ line of the vertex frame from vertex 11 to vertex 4 (note: $J=6$ and $S=11$ here) with point $1,4 / 11$ of the way from vertex 11 to vertex 4 (note: $1 * 48=4 * 11+4$). https://www.playingwithpolygons.com?vertex=13\&subdivisions=11\&points=48\&jumps=6

