Glossary of Commonly Used Terms
 (Reference to where the term was introduced)

\boldsymbol{C} is the number of segments in a cycle. $\boldsymbol{C}=\boldsymbol{S} / \operatorname{GCD}(\boldsymbol{S}, \boldsymbol{P}) .(2.2 \mathrm{c})$
Circuit: A circuit is complete once the starting point for the image (in PwP this is always the top of the circle) is achieved as an endpoint. (1.2)

Continuously drawn: An image is continuously drawn if line segments are connected from one to another following a rule until the initial starting point is obtained as the end point of a segment. This applies both to polygons and stars (1.2) and to images with subdivisions (2.1).

Cycle: A partial image consisting of the line segments needed to get from Level 0 back to Level 0 . (2.2c)
Distinct images: Images based on different $\boldsymbol{n}, \boldsymbol{S}, \boldsymbol{P}, \boldsymbol{J}$ values may look identical to one another. There are a variety of reasons this may happen. Distinct images have different n, S, P, J values AND look different from one another. (2.3)
E is the number of the parent polygon vertex that occurs at the end of the first cycle. (2.2d)
GCD: The greatest common divisor of two numbers is the largest factor common to both.
Image: Term used for a completed graph. (Introduction)
\boldsymbol{J} is the number of \boldsymbol{J} umps between vertices. When $\boldsymbol{J}=1$, the resulting image is a polygon. If $\boldsymbol{J}>1$, stars can emerge. (1)

Just-over and Just-under multiples: Interesting images often times occur when one parameter is close to but not quite a multiple of another. This is seen in numerous places but notably in 1.4, stars as rotating polygons (when $\boldsymbol{n}=\boldsymbol{m}^{*} \boldsymbol{\pm} \boldsymbol{a}$ where \boldsymbol{m} is a whole number and \boldsymbol{a} is a small whole number. In File 2, this is seen in 2.6b One Level Change images, 2.7 Shape-shifting polygons, as well as with numerous image archetypes in 2.9.
\boldsymbol{L} is the number of $\boldsymbol{L i n e}$ segments in the image. An image may appear to have fewer line segments than listed for a couple of reasons: 1) segments may overlap; 2) segments may be part of the same line. An example of the first is the vertical line that results whenever \boldsymbol{n} is even and $J=\boldsymbol{n} / 2$. The simplest example of the second is when $(\boldsymbol{n}, \boldsymbol{S}, \boldsymbol{P}, \boldsymbol{J})=(3,2,1,1)$. The resulting triangle has $\boldsymbol{L}=6,2$ on each of the 3 sides. (2.2a)

Levels: There are INTEGER(S/2) subdivision-point-created concentric interior circles. (INTEGER is the integer portion of a fraction so $\operatorname{INTEGER}(5 / 2)=\operatorname{INTEGER}(2.5)=2$ (not 3 as would be the case were we to round up to the next nearest integer as is common mathematical practice).) Points at Level 0 are polygonal vertices and Level $\operatorname{INTEGER}(S / 2)$ is the smallest circle. (2.6)
\boldsymbol{M} is the number of cycles in an image. \boldsymbol{M} must be a factor of \boldsymbol{n}. (2.2c)
\boldsymbol{n}-gon: An \boldsymbol{n}-sided polygon. (1)
\boldsymbol{n}-gram: An \boldsymbol{n}-sided star. This is a generalization of pentagram. (1)
One-time-around images: If $\boldsymbol{T}=1$ the image is called a one-time-around image. (2.2d)
\boldsymbol{P} is the number of subdivisions between \boldsymbol{P} oints. \boldsymbol{P} is a whole number. The image is created by connecting subdivision endpoints that are \boldsymbol{P} subdivisions apart with a line segment. (2.1)

Polygon: A polygon occurs if the line segments comprising the image do not cross over one another except at the common endpoint. A polygon is regular if all vertices are equally spaced around a circle. Also called an n-gon. (1)
\boldsymbol{S} is the number of equally spaced Subdivisions between successive vertices in the vertex frame. \boldsymbol{S} is a whole number. (2.1)

SCF: The subdivision common factor, SCF, is given by SCF = GCD $\left(\boldsymbol{P}, \boldsymbol{S}^{*} \boldsymbol{v}_{\text {used }}\right)(2.2 \mathrm{a})$
Star: A star occurs when the image has segments that cross over other segments at points other than their endpoints. Also called an n-gram. (1)

Vertex frame: The vertex frame is the set of line segments which include all possible subdivisions. The vertex frame is solely determined by \boldsymbol{n} and \boldsymbol{J}. One can visualize the vertex frame by setting $\boldsymbol{S}=\boldsymbol{P}$. (2.2b)
\boldsymbol{T} is the number of times around vertices of the parent polygon are added to create the image. This is most easily seen using Toggle Drawing on the companion website. The easiest to see are $1 x$ around and $2 x$-around images. (2.2d)

VCF: The vertex common factor, VCF, is given by VCF = GCD(J, $\boldsymbol{n}) .(2.2 \mathrm{a})$
$\mathbf{v}_{\text {used: }}$ The number of polygon vertices used is given by $\boldsymbol{v}_{\text {used }}=\boldsymbol{n} /$ VCF. (2.2a)

