About Right Angles in Cardioids

All angles created by the intersection of two lines must be acute (less than 90°), right (90°), or obtuse (greater than 90°). While acute and obtuse angles occur in the vast majority of $\boldsymbol{n}, \boldsymbol{k}$ combinations, for a right angle to exist, one thing is certain: \boldsymbol{n} must be even.

Why \boldsymbol{n} is even. Consider the diagram to the right for an interior angle. Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$, and \boldsymbol{d} represent non-overlapping arcs of a circle that sum to \boldsymbol{n}. Lines connecting alternating arc endpoints create two angles \boldsymbol{F} and \boldsymbol{G}. These angles must satisfy

$$
F=180(a+c) / n^{\circ} \quad G=180(b+d) / n^{\circ}
$$

These angles are right if $\boldsymbol{F}=\boldsymbol{G}$. This implies $(\boldsymbol{a}+\boldsymbol{c})=(\boldsymbol{b}+\boldsymbol{d})$. Since $(\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}+\boldsymbol{d})=\boldsymbol{n}$, $2(\boldsymbol{a}+\boldsymbol{c})=\boldsymbol{n}$ or $(\boldsymbol{a}+\boldsymbol{c})=\boldsymbol{n} / 2$. Since \boldsymbol{a} and \boldsymbol{c} are whole numbers, \boldsymbol{n} must be even.

Inscribed angles can only be right angles if \boldsymbol{n} is even because the arc contained by the arms of the angle, a, must be $n / 2$ given $90^{\circ}=180 \cdot a / n^{\circ}$ according to the Inscribed
 Angle Theorem. It is worth noting that if an inscribed angle is right, then if one were to draw a line connecting the endpoints of the arms, the resulting line would be a diameter of the circle (with half the vertices of the polygon on each side of this line). We will see this in the discussion of right angles at vertices 2,4 , and 6 in the $\boldsymbol{n}=14, \boldsymbol{k}=2$ bottom image.

It is instructive to note that an even \boldsymbol{n} does not ensure that the image has right angles because \boldsymbol{k} might produce an image without right angles. The three examples below are $\boldsymbol{n}=6$ with $\boldsymbol{k}=2,3$, and 6 . The middle has no right angles while the left has two inscribe and one interior right angle vertex point and the right has two inscribed right angles.

The $\boldsymbol{n}=14, \boldsymbol{k}=2$ example at the right has 6 inscribed right angles, one at each even vertex except for $\boldsymbol{n}=14$. Recalling that cardioids have vertical symmetry, it is worth considering why right angles exist at vertices 2,4 , and 6 . The reason is based on the starting point vertices for each arm of each angle. For each point, remember that $\boldsymbol{n} / 2=7$ and $\boldsymbol{k}=2$ so the end point is always 2 times the starting point and when the endpoint is larger than \boldsymbol{n}, all that matters is the remainder.
b2) 1 to 2 is one arm. The other arm is from $n / 2+1=8$ to $\boldsymbol{n}+2$ or 2 .
ь4) 2 to 4 is one arm. The other arm is from $n / 2+2=9$ to $n+4$ or 4 .
ь6) 3 to 6 is one arm. The other arm is from $n / 2+3=10$ to $n+6$ or 6 .
In each instance, the starting point of each arm is half-way around the circle from the other starting point, just as required for right angles.

