## Pencil and Ruler Exercise: Changing $S$ (subdivisions between vertices)

 with fixed $\boldsymbol{n}$ (vertices in polygon), $\boldsymbol{P}$ (subdivisions between points) and $\boldsymbol{J}$ (polygon vertex jumps)FACT: All four subdivision dot-plots have the same number of $\boldsymbol{n}, \boldsymbol{n}=$ $\qquad$ , and the same number for $\boldsymbol{J}, \boldsymbol{J}=$ $\qquad$ _.

Drawing Instructions: Start at the top dot and draw each image from point to point with pencil and ruler assuming six subdivisions between points, $\boldsymbol{P}=6$.


$S=$ $\qquad$ . Are all subdivision points used? $\qquad$ . $\mathrm{SCF}=$ $\qquad$ .
$S=$ $\qquad$ . Are all subdivision points used? $\qquad$ . SCF = $\qquad$ .

$S=$ $\qquad$ . Are all subdivision points used? $\qquad$ . $\mathrm{SCF}=$ $\qquad$ . $\qquad$
$\qquad$ . Are all subdivision points used? $\qquad$ . SCF = $\qquad$ _.

NOTE: SCF is calculated as: $\operatorname{SCF}=\operatorname{GCD}(\boldsymbol{n} \cdot \operatorname{S} / \operatorname{VCF}(\boldsymbol{n}, \boldsymbol{J}), \boldsymbol{P})$ where $\operatorname{VCF}=\operatorname{GCD}(\boldsymbol{n}, \boldsymbol{J})$ and $\operatorname{GCD}$ is the greatest common divisor (also called greatest common factor) between the two numbers. (In the above images, VCF = 1.) One can see SCF as the bottom of the fraction of subdivisions used (so for example, if $1 / 2$ of the subdivisions are used, $\operatorname{SCF}=2$ ).

