11. Number of Lines in an Image

Cardioid lines are created according to the rule: Connect a line from each vertex of a regular \boldsymbol{n}-gon $\boldsymbol{v}, 0 \leq \boldsymbol{v} \leq \boldsymbol{n}-1$ to vertex $\boldsymbol{k} \cdot \boldsymbol{v}$ where \boldsymbol{k} is a whole number exceeding 1 . If $\boldsymbol{k} \cdot \boldsymbol{v}>\boldsymbol{n}-1$, the ending vertex \boldsymbol{w} is the remainder upon division by \boldsymbol{n}, $0 \leq \boldsymbol{w}<\boldsymbol{n}$, and $\boldsymbol{k} \cdot \boldsymbol{v}=\boldsymbol{m} \cdot \boldsymbol{n}+\boldsymbol{w}$ where and \boldsymbol{m} is a whole number, or $\boldsymbol{w}=\operatorname{MOD}(\boldsymbol{k} \cdot \boldsymbol{v}, \boldsymbol{n})$ where MOD is the remainder function.

Given this, one might expect the image would have \boldsymbol{n} lines, one for each vertex. Explainer 11.1a notes that there will never be a line starting at 0 because the ending vertex is also 0 . By counting the lines from where they start, we see that there are AT MOST $n-1$ lines in an image. The six images below show the range of possibilities. The first five are based on $\boldsymbol{n}=6$ for \boldsymbol{k} from $2 \leq k \leq 6$, the last shows an $\boldsymbol{n}=8$ example. From left to right, there are 3,4 , and 3 lines (top) and 2,5 , and 2 lines (bottom). The bottom middle circle fan has $\boldsymbol{n}-1$ lines and the other two bottom images have the fewest lines.

