Further Automating the Functional Relation $n(k)=\boldsymbol{a} \boldsymbol{k}+\boldsymbol{b}$

Explainer 11.5a showed how to connect \boldsymbol{n} to \boldsymbol{k} via an equation in cell B1. This explainer provides a quick way to automate that equation so that you can easily adjust it and see the results.

We consider here a general relation $\boldsymbol{n}(\boldsymbol{k})=\boldsymbol{a} \boldsymbol{k}+\boldsymbol{b}$ where \boldsymbol{a} and \boldsymbol{b} are whole numbers (which can be negative or positive). (A negative value of \boldsymbol{n} simply means counting around the circle in a counterclockwise direction.)

Automating $\boldsymbol{n}(\mathbf{k})$. Instead of clicking on cell B1 and changing the equation each time you want to consider a new functional relation between \boldsymbol{n} and \boldsymbol{k}, we can use the unprotected green cells starting in P1 to help simplify equation adjustments. The idea is to put \boldsymbol{a} and \boldsymbol{b} in cells (P12 and P13) then link the equation for \boldsymbol{n} (in B1) to BOTH \boldsymbol{k} in D1 and \boldsymbol{a} and \boldsymbol{b} in P12 and P13. (The equation to type in B1 is shown in cell P14 below.)

Column		\cdots	\mathbf{P}	\mathbf{Q}
Row	\cdots	\cdots	\cdots	\cdots
\cdots	\cdots	\cdots	\cdots	\cdots
11	\cdots	\cdots	Equation for cell B1: $\boldsymbol{n}=\boldsymbol{a} \boldsymbol{k}+\boldsymbol{b}$	
12	\cdots	\cdots	$\mathbf{3}$	\boldsymbol{a} (in cell P12)
13	\cdots	\cdots	$\mathbf{3}$	\boldsymbol{b} (in cell P13)
14	\cdots	\cdots	In B1 type: $\boldsymbol{= P 1 2 *}$ D1+P13 enter.	
15	\cdots	\cdots	Then use \boldsymbol{k} arrows in C1:C2.	

Once you type in this equation in B1, all you do is change \boldsymbol{a} or \boldsymbol{b} to order to test a new relation. Consider the three functions examined in 11.5a, $\boldsymbol{n}=\boldsymbol{k}, \boldsymbol{n}=\mathbf{2 k}$, and $\boldsymbol{n}=\mathbf{2 k}+1$. The first require 1 in P12 and 0 P 13 . Change P12 to 2 and you see the second. Change P13 to 1 and see the third ... all without touching B1.

The images below show the \boldsymbol{a} and \boldsymbol{b} suggested above, $\boldsymbol{n}=3 \boldsymbol{k}+3$ for $\boldsymbol{k}=6$ and $\boldsymbol{k}=7$. As \boldsymbol{k} changes, one still sees only equilateral triangles, but other patterns emerge as well. In particular, see if you can identify different patterns based on the remainder of \boldsymbol{k} once \boldsymbol{k} is divided by 6 . The two images below show remainder 0 and 1. For example, when \boldsymbol{k} is one more than a multiple of 6 (like the right image below) one can see regular hexagons). Every other version will show 6 pie pieces (like below). but $\boldsymbol{k}=13$ has no such inner pie pieces (however $\boldsymbol{k}=19$ once again looks like an extended version of $\boldsymbol{k}=7$ below).

