Further Automating the Functional Relation n(k) = ak + b

Explainer 11.5a showed how to connect **n** to **k** via an equation in cell B1. This explainer provides a quick way to automate that equation so that you can easily adjust it and see the results.

We consider here a general relation n(k) = ak + b where a and b are whole numbers (which can be negative or positive). (A negative value of n simply means counting around the circle in a counterclockwise direction.)

Automating n(k). Instead of clicking on cell B1 and changing the equation each time you want to consider a new functional relation between n and k, we can use the unprotected green cells starting in P1 to help simplify equation adjustments. The idea is to put aand b in cells (P12 and P13) then link the equation for n (in B1) to BOTH k in D1 and aand b in P12 and P13. (The equation to type in B1 is shown in cell P14 below.)

Column		•••	Р	Q
Row	•••	•••	•••	•••
•••	•	••	•••	•••
11	••	••	Equation for cell B1: n = ak+b	
12	•••	•••	3	a (in cell P12)
13	•••	•••	3	b (in cell P13)
14	•••	•••	In B1 type: <u>=P12*D1+P13</u> enter.	
15	•••	•••	Then use k arrows in C1:C2.	

Once you type in this equation in B1, all you do is change a or b to order to test a new relation. Consider the three functions examined in 11.5a, n = k, n = 2k, and n = 2k + 1. The first require 1 in P12 and 0 P13. Change P12 to 2 and you see the second. Change P13 to 1 and see the third ... all without touching B1.

The images below show the **a** and **b** suggested above, n = 3k+3 for k = 6 and k = 7. As **k** changes, one still sees only equilateral triangles, but other patterns emerge as well. In particular, see if you can identify different patterns based on the remainder of **k** once **k** is divided by 6. The two images below show remainder 0 and 1. For example, when **k** is one more than a multiple of 6 (like the right image below) one can see regular hexagons). Every other version will show 6 pie pieces (like below). but **k** = 13 has no such inner pie pieces (however **k** = 19 once again looks like an extended version of **k** = 7 below).

