11. Three Special Cases (when \boldsymbol{n} and \boldsymbol{k} are close to one another)

Why focus on $\mathbf{k} \leq \boldsymbol{n}$? The Cardioid file allows $3 \leq \boldsymbol{n} \leq 360$ and $2 \leq \boldsymbol{k} \leq 360$ but, as a practical matter, one does not obtain different results when $\boldsymbol{k}>\boldsymbol{n}$ because when this is true, we can use another smaller value in place of \boldsymbol{k} to produce the same image. In particular, let \boldsymbol{r} be the remainder upon division by \boldsymbol{n}, so that $\boldsymbol{k}=\boldsymbol{m} \cdot \boldsymbol{n}+\boldsymbol{r}$ where \boldsymbol{m} is the largest whole number multiple of \boldsymbol{n} and $\boldsymbol{r}<\boldsymbol{n}$. Images created using \boldsymbol{k} and \boldsymbol{r} will be the same because all that matters (from the perspective of line placement) is the remainder upon division by n.

Despite this, it is worth considering what happens when \boldsymbol{k} and \boldsymbol{n} are very close to one another including when \boldsymbol{k} is a bit larger than \boldsymbol{n}.
$\boldsymbol{k}=\boldsymbol{n} \mathbf{- 1}$. All lines are horizontal and connect vertex \boldsymbol{v} with $\boldsymbol{n} \boldsymbol{v}$. Take vertex \boldsymbol{v} and multiply by $\boldsymbol{k}=\boldsymbol{n}-1$.
Starting vertex is \boldsymbol{v}. Ending $\boldsymbol{k} \cdot \boldsymbol{v}=(\boldsymbol{n}-1) \cdot \boldsymbol{v}=\boldsymbol{n} \cdot \boldsymbol{v}-\boldsymbol{v}=\boldsymbol{n} \cdot \boldsymbol{v}-\boldsymbol{n}+\boldsymbol{n}-\boldsymbol{v}=\boldsymbol{n} \cdot(\boldsymbol{v}-1)+[\boldsymbol{n}-\boldsymbol{v}]$.
Starting vertex is $\boldsymbol{n} \boldsymbol{- v}$. Ending $\boldsymbol{k} \cdot(\boldsymbol{n}-\boldsymbol{v})=(\boldsymbol{n}-1) \cdot(\boldsymbol{n}-\boldsymbol{v})=\boldsymbol{n}^{2}-\boldsymbol{n}-\boldsymbol{n} \cdot \boldsymbol{v}+\boldsymbol{v}=\boldsymbol{n} \cdot(\boldsymbol{n}-\boldsymbol{v}-1)+[\boldsymbol{v}]$.
The $\boldsymbol{n}=12, \boldsymbol{k}=11$ image is shown on the left. In this instance, vertices \boldsymbol{v} and $\boldsymbol{n} \boldsymbol{v}$ are paired vertices, the top is always an identity vertex and when \boldsymbol{n} is even, so is the bottom (see explainer 11.6b).
$\boldsymbol{k}=\boldsymbol{n}$. All lines end the top (vertex 0) since $\boldsymbol{k} \cdot \boldsymbol{v}=\boldsymbol{n} \cdot \boldsymbol{v}=\boldsymbol{n} \cdot \boldsymbol{v}+[0]$ for all \boldsymbol{v} because all vertices are multiples of \boldsymbol{n}. This is a circle fan (discussed at greater length in explainer 11.7a). The $\boldsymbol{n}=\boldsymbol{k}=12$ circle fan is shown on the right.
$\boldsymbol{k}=\boldsymbol{n}+\mathbf{1}$. In this instance all ending vertices are the same as starting vertices.

$$
\text { Starting vertex } \boldsymbol{v}: \quad \text { Ending } \boldsymbol{k} \cdot \boldsymbol{v}=(\boldsymbol{n}+1) \cdot \mathbf{v}=\boldsymbol{n} \cdot \boldsymbol{v}+\boldsymbol{v}=\boldsymbol{n} \cdot \mathbf{v}+[\boldsymbol{v}]
$$

Put another way, the image can be thought of as \boldsymbol{n} points but no lines. In this instance, all vertices are identity vertices (see explainer 11.6b). This is why the smallest \boldsymbol{k} considered is $\boldsymbol{k}=2$. This (empty) image is not shown but you can readily check out what happens yourself using the Cardioid file.

