

Centered Regular Polygons and Stars (CRPS) I

When $\boldsymbol{n}=\boldsymbol{k}^{\mathbf{2}}-1$ the resulting image has centered regular \boldsymbol{k} - $\mathbf{1}$-gons (CRP) and centered regular stars (CRS). The $\boldsymbol{k}=4$ and 5 images show a regular centered triangle and square but when \boldsymbol{k} increases beyond that, \boldsymbol{k} - $\mathbf{1}$-stars appear as well. Each image has $\boldsymbol{k}-1$ degrees of rotational symmetry and \boldsymbol{k} - 1 identity vertices. The remaining $\boldsymbol{k}^{2}-\boldsymbol{k}$ vertices are
 paired vertices so that in all there are $\boldsymbol{k} \cdot(\boldsymbol{k}-1) / 2$ lines in each image.
Paired vertices allow us to describe a line by reference to a single vertex, and rotational symmetry means we only need concern ourselves with the portion of the image from 0 to $\boldsymbol{k}+1$. The intersection of the blue horizontal $k-1$ line and the red 2 line forms one corner of the largest \boldsymbol{k} - $\mathbf{1}$-gon in each image. The exterior angle to the \boldsymbol{k} - $\mathbf{1}$-gon created by these two lines is $2 \cdot(\boldsymbol{k}+1) \cdot 180 / \boldsymbol{n}^{\circ}=360 /(\boldsymbol{k}-1)^{\circ}$ since $\boldsymbol{k}^{2}-1=(\boldsymbol{k}+1) \cdot(\boldsymbol{k}+1)$. The sum of exterior angles in the \boldsymbol{k} - $\mathbf{1}$-gon is thus 360°.

The focus here is on centered regular polygons and stars. The 3 small triangles for $\boldsymbol{k}=4$ are NOT centered. And one can readily envision irregular \boldsymbol{k} - 2 -stars in the $\boldsymbol{k}=7$ image above using internal pentagons from two of the internal hexagonal pie-pieces in the center of the image.
The CRPS use the vertices of the \boldsymbol{k}-gon. Each \boldsymbol{k}-1-gon or \boldsymbol{k}-1-star vertex is on the interior of the line segments created by the image. They are smaller than the regular polygons and stars discussed in PARTS I and II of PwP.

Increasing lines by 1 from 2 and decreasing by 1 from \boldsymbol{k}-1 creates both stars and smaller polygons at points of star line intersections. One can readily see the smaller pointed pentagon and hexagon in the $\boldsymbol{k}=6$ and 7 images above.

There is only one CRS when $\boldsymbol{k}=6$ and 7 as we see above. When $\boldsymbol{k}>7$ there are multiple centered \boldsymbol{k} - $\mathbf{1}$-stars. In each instance, the polygons created will alternate between being flat and pointed at the top as seen on p 2.

The image below reproduces the $\boldsymbol{n}=99, \boldsymbol{k}=10$ image shown at the bottom of page 1 . The dashed purple rays show the first $9^{\text {th }}$ of the image (recall, these images have rotational symmetry of degree $\boldsymbol{k}-1$ (or 9 here). All other $9^{\text {th }}$ s are identical to this one. Further annotation of this $9^{\text {th }}$ is included via dots at vertices and intersection points in three different colors. The four 9-gons alternate with point at bottom and top and are noted by circled points in black numbered from 1 to 4 .

The colored dots on vertices 3 through 8 highlight the symmetrically chosen vertices the same distance from the end of vertices 1 and 10. For example, the blue dots at 3 and 8 are associated with the lines at 3 and 8 which create a 100° angle, 9-vertex, 2-jump CRS (this is discussed in explainer 1.5a). Similarly, the red dots are 60° angle 9-vertex 3-jump CRS (such stars are cannot be drawn as a continuously drawn star as discussed in explainer 1.2 because $G C D(3,9)=3)$. Finally, the yellow dots are associated with the $\mathbf{2 0 ^ { \circ }}$ angle, 9 -vertex, 4-jump CRS.

Note that there is only one 4-jump CRS but there are two 3-jump CRSs (the smaller based on the lines used in creating the 4-jump CRS) and three nested 2-jump CRSs (the smaller based on the lines used in creating the 3-and 4-jump CRSs).

