

If you find such an image, you can expand them by changing \boldsymbol{S} and \boldsymbol{P} for fixed \boldsymbol{J} and \boldsymbol{n}. The rule is simple and elegant.

- Add the smaller of \boldsymbol{J} and \boldsymbol{n}-J to \boldsymbol{S} for the next higher \boldsymbol{S} (so 7 turns into 11 at middle left or 7 to 12 at bottom left).
- Add \boldsymbol{n} to \boldsymbol{P} for the next higher \boldsymbol{P}.

This process produces images that are similar but have one more polygon or star per cycle. Because of the overlapping and stretched nature of the polygons and stars, this can be confusing to count unless you think in terms of a "distinguished attribute" of these looped images. In the polygon version it might be the outer edge which goes from 1 in upper left to 2,3 , and 4 in the middle row from left to right (and notice that the middle edge in the odd versions have endpoints at the same level as one another). In the star version, tops are hard to see but note that the bottom points go from 2 in upper right to 3,4 , and 5 in the bottom row from left to right.

$\boldsymbol{S}=\mathbf{5} \boldsymbol{k}+2=(\boldsymbol{n}-\boldsymbol{J}) \boldsymbol{k}+2$ and $\boldsymbol{P}=\mathbf{1 3 \boldsymbol { k } + 5}=\boldsymbol{n} \boldsymbol{k}+5$ given $\boldsymbol{J}=\mathbf{8}, \boldsymbol{n}=13(\boldsymbol{k}=1$ top right, and $\boldsymbol{k}=\mathbf{2 - 4}$ below) link to bottom right image

The images on the next few pages show $k=1-3$ for various J and n. Initial rows are shown with explicit discussion of S and P functions, but later versions leave that to the reader.

$\boldsymbol{S}=\mathbf{4 k}+1=(\boldsymbol{n}-\boldsymbol{J}) \boldsymbol{k}+1$ and $\boldsymbol{P}=17 \boldsymbol{k}+4=\boldsymbol{n} \boldsymbol{k}+4$ given $\boldsymbol{J}=13, \boldsymbol{n}=17$

$\boldsymbol{S}=\mathbf{5 k + 4}=(\boldsymbol{n}-\boldsymbol{J}) \boldsymbol{k}+4$ and $\boldsymbol{P}=\mathbf{1 4 k}+11=\boldsymbol{n k}+11$ given $\boldsymbol{J}=9, \boldsymbol{n}=14$

$\boldsymbol{S}=\mathbf{4 k}+3=(\boldsymbol{n}-J) \boldsymbol{k}+3$ and $\boldsymbol{P}=15 \boldsymbol{k}+11=\boldsymbol{n k}+11$ given $\boldsymbol{J}=11, \boldsymbol{n}=15$

$$
\boldsymbol{S}=4 \boldsymbol{k}+3=\boldsymbol{J} \boldsymbol{k}+3 \text { and } \boldsymbol{P}=17 \boldsymbol{k}+13=\boldsymbol{n} \boldsymbol{k}+13 \text { given } \boldsymbol{J}=4, \boldsymbol{n}=17
$$

$$
\boldsymbol{S}=5 \boldsymbol{k}+4=\boldsymbol{J} \boldsymbol{k}+4 \text { and } \boldsymbol{P}=16 \boldsymbol{k}+13=\boldsymbol{n} \boldsymbol{k}+13 \text { given } \boldsymbol{J}=5, \boldsymbol{n}=16
$$

This is a link to the image above

$\boldsymbol{S}=\mathbf{7 k}+1$ and $\boldsymbol{P}=48 \boldsymbol{k}+7$ given $\boldsymbol{J}=7, \boldsymbol{n}=24$ (note that $\mathbf{2 n}$ are added to \boldsymbol{P} rather than \boldsymbol{n} in this instance)

The next row starts at $\boldsymbol{k}=2$ (the $\boldsymbol{k}=1$ version has a degenerate loop).

$\boldsymbol{S}=\mathbf{7 k}+2$ and $\boldsymbol{P}=\mathbf{2 4 k}+7$ given $\boldsymbol{J}=\mathbf{7}, \boldsymbol{n}=24$

This is a link to the image above

The next two rows are based on $\boldsymbol{n}=30$ and $\boldsymbol{J}=7$

Note the difference for the images in the row below. Following the strategy of adding \boldsymbol{J} to \boldsymbol{S} and \boldsymbol{n} to \boldsymbol{P} produces $\boldsymbol{P}=133$. But $\operatorname{GCD}(19,133)=19$ so the image collapses to the vertex frame. But adding $2 \boldsymbol{n}$ to \boldsymbol{P} produces subsequent images.

This is a link to the image above

