Composite Squares produce multiple single-step Polygons and Polygrams

One obtains <u>single-step images</u> of rotating **G**-sided polygons if **G**·**P** is one more or less than $n \cdot S$ with J = 1. When J > 1, such images can either be polygons or polygrams. This explainer shows a trick that can be used to find multiple polygons if **n** and **S** differ by 2 and if the number in between (which we call **C** for center) is composite. The trick works because of a fact from algebra called the *difference between squares* formula: $(C-b) \cdot (C+b) = C^2 - b^2$ (e.g., 19·21 = 399 or 18·22 = 396).

When b = 1, this formula produces a number that is 1 less than a perfect square: $(C-1) \cdot (C+1) = C^2 - 1$. Let n and S be the

numbers on either side of *C* (it does not matter which is which but if you want to create as large a single-step *G*-gon as possible, let *S* = *C*-1). Each factor of *C*² (2, 3, 4, 6, 9, 12, and 18 for *C* = 6) can act as either the size of the *G*-gon or the value of *P* necessary to produce that *G*-gon as long as *P* > *S*/2 so that successive lines have ends on different lines of the VF. Thus *J* = 1, *P* = 3, produces the 12-gon at left if *S* = 5 and *n* = 7 but only the 9-gon at right if *S* = 7 and *n* = 5 (since the 1st, 3rd and 4th VF lines have 2 segments each of the first 12 shown).

More generally, if **G** is a factor of C^2 , **S** and **n** are the numbers on either side of **C**, **J** = 1, and **P** = C^2/G satisfies **P** > **S**/2, then the resulting image is based on a clockwise rotating **G**-gon image because **P**·**G** = C^2 = **n**·**S**+1.

Varying J. These images show the first 5 lines (G = 5) and VF for J = 1 to 6 given n = 16, S = 14, so $P = 45 = (16 \cdot 14 + 1)/5$. Similar images would have occurred had n = 14 and S = 16 been used. (Additional G are 3, 9, 15 and 25 given C = 15.)

Composite G. When **G** is composite, interesting results happen when GCD(G,J) > 1. For example, if G = C = 30, the first 30 lines are: 1 30-gon if J = 1; 2 15-gons if J = 2; 3 10-gons if J = 3; 2 15-grams if J = 4; 5 6-gons if J = 5; 6 5-gons if J = 6; 10 3-gons if J = 10; and 15 2-gons if J = 15. Switching **n** and **S** produce similar images. But, a **G** = 60-gon (set **P** = 15) is possible

only if S = 29, n = 31 and J =1. In
this case J = 10 is almost a 6,2 star.

С	30 = 2.3.5	G -gon/ gram	2	3	4	5	6	9	10	12	15	18	20	25	30
\boldsymbol{C}^2	900	$P = C^2/G$	450	300	225	180	150	100	90	75	60	50	45	36	30