Composite Squares produce multiple single-step Polygons and Polygrams

One obtains single-step images of rotating \boldsymbol{G}-sided polygons if $\boldsymbol{G} \cdot \boldsymbol{P}$ is one more or less than $\boldsymbol{n} \cdot \boldsymbol{S}$ with $\boldsymbol{J}=1$. When $\boldsymbol{J}>\boldsymbol{1}$, such images can either be polygons or polygrams. This explainer shows a trick that can be used to find multiple polygons if \boldsymbol{n} and \boldsymbol{S} differ by 2 and if the number in between (which we call \boldsymbol{C} for center) is composite. The trick works because of a fact from algebra called the difference between squares formula: $(\boldsymbol{C}-\boldsymbol{b}) \cdot(\boldsymbol{C}+\boldsymbol{b})=\boldsymbol{C}^{2}-\boldsymbol{b}^{2}($ e.g., $19 \cdot 21=399$ or $18 \cdot 22=396)$.
When $\boldsymbol{b}=1$, this formula produces a number that is 1 less than a perfect square: $(\boldsymbol{C}-1) \cdot(\boldsymbol{C}+1)=\boldsymbol{C}^{2}-1$. Let \boldsymbol{n} and \boldsymbol{S} be the
 numbers on either side of \boldsymbol{C} (it does not matter which is which but if you want to create as large a single-step \mathbf{G}-gon as possible, let $\boldsymbol{S}=\boldsymbol{C}$-1). Each factor of $\boldsymbol{C}^{2}(2,3,4,6,9,12$, and 18 for $\boldsymbol{C}=6$) can act as either the size of the \boldsymbol{G}-gon or the value of \boldsymbol{P} necessary to produce that \boldsymbol{G}-gon as long as $\boldsymbol{P}>\boldsymbol{S} / 2$ so that successive lines have ends on different lines of the VF. Thus $\boldsymbol{J}=1, \boldsymbol{P}=3$, produces the 12 -gon at left if $\boldsymbol{S}=5$ and $\boldsymbol{n}=7$ but only the 9 -gon at right if $\boldsymbol{S}=7$ and $\boldsymbol{n}=5$ (since the $1^{\text {st }}, 3^{\text {rd }}$ and $4^{\text {th }} \mathrm{VF}$ lines have 2 segments each of the first 12 shown).

More generally, if \boldsymbol{G} is a factor of $\boldsymbol{C}^{2}, \boldsymbol{S}$ and \boldsymbol{n} are the numbers on either side of $\boldsymbol{C}, \boldsymbol{J}=1$, and $\boldsymbol{P}=\boldsymbol{C}^{2} / \boldsymbol{G}$ satisfies $\boldsymbol{P}>\boldsymbol{S} / 2$, then the resulting image is based on a clockwise rotating \boldsymbol{G}-gon image because $\boldsymbol{P} \cdot \boldsymbol{G}=\boldsymbol{C}^{2}=\boldsymbol{n} \cdot \mathbf{S}+\mathbf{1}$.
Varying \boldsymbol{J}. These images show the first 5 lines $(\boldsymbol{G}=5$) and VF for $\boldsymbol{J}=1$ to 6 given $\boldsymbol{n}=16, \boldsymbol{S}=14$, so $\boldsymbol{P}=45=(16 \cdot 14+1) / 5$. Similar images would have occurred had $\boldsymbol{n}=14$ and $\boldsymbol{S}=16$ been used. (Additional \boldsymbol{G} are 3, 9, 15 and 25 given $\boldsymbol{C}=15$.)

Composite \boldsymbol{G}. When \boldsymbol{G} is composite, interesting results happen when $\operatorname{GCD}(\boldsymbol{G}, \boldsymbol{J})>1$. For example, if $\boldsymbol{G}=\boldsymbol{C}=30$, the first 30 lines are: 130 -gon if $\boldsymbol{J}=1 ; 215$-gons if $\boldsymbol{J}=2 ; 310$-gons if $\boldsymbol{J}=3 ; 215$-grams if $\mathrm{J}=4 ; 56$-gons if $\boldsymbol{J}=5 ; 65$-gons if $\boldsymbol{J}=6 ; 103$ gons if $\boldsymbol{J}=10$; and 152 -gons if $\boldsymbol{J}=15$. Switching \boldsymbol{n} and \boldsymbol{S} produce similar images. But, a $\boldsymbol{G}=60$-gon ($\operatorname{set} \boldsymbol{P}=15$) is possible only if $\boldsymbol{S}=29, \boldsymbol{n}=31$ and $\boldsymbol{J}=1$. In this case $\boldsymbol{J}=10$ is almost a 6,2 star.

\boldsymbol{C}	$30=2 \cdot 3 \cdot 5$	\mathbf{G}-gon/ gram	2	3	4	5	6	9	10	12	15	18	20	25	30
\boldsymbol{C}^{2}	900	$\boldsymbol{P}=\boldsymbol{C}^{2} / \boldsymbol{G}$	450	300	225	180	150	100	90	75	60	50	45	36	30

