Finger Traps

Finger traps are most basically quivering polygons with two sides (rather than 3 or more). As discussed in the variations on QTs and single cycle explainers, one obtains a family of similar images by requiring \boldsymbol{P} to be a multiple of \boldsymbol{n} and \boldsymbol{S} is a multiple of \boldsymbol{J}. Here $\boldsymbol{S}=\mathbf{2 J}$ and $\boldsymbol{P}=\boldsymbol{k} \boldsymbol{n}, 1 \leq \boldsymbol{k}<\boldsymbol{S} / 2$ with \boldsymbol{J} coprime to $\boldsymbol{n}(\mathrm{VCF}=1)$ and $\boldsymbol{J}<\boldsymbol{n} / \mathbf{2}$. We also want $G C D(\boldsymbol{n}, \boldsymbol{S})=1$. The images will have \boldsymbol{S} lines if $\operatorname{GCD}(\boldsymbol{S}, \boldsymbol{k})=1$. There are two point ovals, 0 MOD 2 (even starting points, top oval) and 1 MOD 2 (odd, bottom oval) similar to what was seen in the variations explainer. Even values of \boldsymbol{k} produce small images since used vertices are in the even oval and $\boldsymbol{J}<\boldsymbol{n} / 2$. The images above show two sets of $\boldsymbol{n}=37$ finger traps, $\boldsymbol{J}=14$ and $\boldsymbol{J}=18$.

Top row images have 28 lines; bottom images have 36 lines. $\boldsymbol{J}=18$ is the largest \boldsymbol{J} given $\boldsymbol{n}=37(19>\boldsymbol{n} / 2$ in which case the even oval includes the center of the underlying polygon). For fixed n, the ovals get larger as J increases. Just like discussed in the variations explainer, some \boldsymbol{k} produce images resembling bow-ties (like $\boldsymbol{k}=3$ for $\boldsymbol{J}=14$ or $\boldsymbol{k}=1$ for $\boldsymbol{J}=18$).

The finger trap's woven cross-hatching is most visible in the upper right ($\boldsymbol{k}=13, \boldsymbol{J}=14$) image. By contrast, the lower right $(\boldsymbol{k}=17, \boldsymbol{J}=18)$ image is like shark's teeth with a closed mouth but change to $\underline{n=35}$ and the shark is open-mouthed!

