Modular Analysis of Two Footballs Cycles

The Two Footballs explainer proposed the following rule for creating two footballs images:
Base two footballs images off of \boldsymbol{J}. These images occur when $\boldsymbol{n}=\boldsymbol{P}=3 \boldsymbol{J} \pm 1$ and $\boldsymbol{S}=2 \boldsymbol{J} \pm 2$.
The current explainer examines why there are 1,2 , or 4 cycles in a given two footballs image.
Single cycle images. In that explainer, the claim was made that if \boldsymbol{n} is odd there must be a single cycle. When will \boldsymbol{n} be odd? Since $\boldsymbol{n}=\boldsymbol{P}=3 \boldsymbol{J} \pm 1, \boldsymbol{n}$ will be odd if $3 \boldsymbol{J}$ is even. Since 3 is odd, $3 \boldsymbol{J}$ is even only if \boldsymbol{J} is even. This means that two footballs images will be single cycle whenever J is even.

Multiple cycle images. Multiple cycle two footballs images can only occur if J is odd.
For each \boldsymbol{J} there are two \boldsymbol{S} and $\boldsymbol{n}=\boldsymbol{P}$ values that produce two footballs images, one version uses plus signs the other uses minus signs in the equations for $\boldsymbol{n}=\boldsymbol{P}$ and \boldsymbol{S}.

CLAIM: For each odd \boldsymbol{J}, one version produces a 2 -cycle image and the other produces a 4 -cycle image.
First, consider \boldsymbol{S}. Recall, $\boldsymbol{S}=2 \boldsymbol{J} \pm 2$. If \boldsymbol{J} is odd, then $2=2 J$ MOD 4 or $2 J$ is divisible by 2 but not 4 .
Consider the adding 2 version of $\boldsymbol{S}: \quad \boldsymbol{S}=2 \boldsymbol{J}+2$ so that $\boldsymbol{S}=2 \boldsymbol{J}+2=2+2=4=0$ MOD 4.
The subtracting 2 version of \boldsymbol{S} is even faster:
$\boldsymbol{S}=2 \boldsymbol{J}-2$ so that $\boldsymbol{S}=2 \boldsymbol{J}-2=2-2=0$ MOD 4 . In both instances, if \boldsymbol{J} is odd, \mathbf{S} is divisible by 4.

The difference between 2 -cycle and 4 -cycle versions depends on $\boldsymbol{n}=\boldsymbol{P}$ when \boldsymbol{J} is odd.
Consider $\boldsymbol{n}=\boldsymbol{P}$ for odd \boldsymbol{J}. Recall $\boldsymbol{n}=\boldsymbol{P}=3 \boldsymbol{J} \pm 1$. If \boldsymbol{J} is odd, it must be of the form $\boldsymbol{J}=4 \boldsymbol{k}+1$ ($\boldsymbol{J}=1$ MOD 4) or $\boldsymbol{J}=4 \boldsymbol{k}+3$ ($\boldsymbol{J}=3 \mathrm{MOD} 4$). We consider these in turn.
$\boldsymbol{J}=\mathbf{1} \operatorname{MOD} 4: \quad$ Consider $\boldsymbol{n}=\boldsymbol{P}=3 \boldsymbol{J}+1 . \quad 3 \boldsymbol{J}=3 \cdot 1=3 \mathrm{MOD} 4$ so that $\boldsymbol{n}=\boldsymbol{P}=3 \boldsymbol{J}+1=3+1=4=0 \mathrm{MOD} 4$. The " +1 " version has 4 -cycles given $\mathrm{J}=1$ MOD 4 .
Consider $\boldsymbol{n}=\boldsymbol{P}=3 \boldsymbol{J}-1.3 \boldsymbol{J}=3 \cdot 1=3 \mathrm{MOD} 4$ so that $\boldsymbol{n}=\boldsymbol{P}=3 \boldsymbol{J}-1=3-1=2 \mathrm{MOD} 4$. The " -1 " version has 2 -cycles given $\mathrm{J}=1$ MOD 4 .
$\boldsymbol{J}=\mathbf{3} \operatorname{MOD} 4: \quad$ Consider $\boldsymbol{n}=\boldsymbol{P}=3 \boldsymbol{J}+1 . \quad 3 \mathrm{~J}=3 \cdot 3=9=1 \mathrm{MOD} 4$ so that $\boldsymbol{n}=\boldsymbol{P}=3 \boldsymbol{J}+1=1+1=2 \mathrm{MOD} 4$. The " +1 " version has 2 -cycles given $\mathrm{J}=3$ MOD 4 .
Consider $\boldsymbol{n}=\boldsymbol{P}=3 \boldsymbol{J}-1.3 \mathrm{~J}=3 \cdot 3=9=1 \mathrm{MOD} 4$ so that $\boldsymbol{n}=\boldsymbol{P}=3 \boldsymbol{J}-1=1-1=0 \mathrm{MOD} 4$. The " -1 " version has 4 -cycles given $\mathrm{J}=3$ MOD 4.

We now see how these rules apply to the images in the Two Footballs explainer.

The top image has $\boldsymbol{S}=166$ lines, $\boldsymbol{n}=\boldsymbol{P}=247$ and $J=82$. It has 1-cycle since J is even.

The middle image has $\boldsymbol{S}=168$ lines, $\boldsymbol{n}=\boldsymbol{P}=250$ and $\boldsymbol{J}=83 . \boldsymbol{J}=3$ MOD 4 and $\boldsymbol{n}=\boldsymbol{P}=3 \boldsymbol{J}+1$ so this is a 2 -cycle image ($3^{\text {rd }}$ option above).

The bottom image has $\boldsymbol{S}=164$ lines, $\boldsymbol{n}=\boldsymbol{P}=248$ and $\boldsymbol{J}=83$. $\boldsymbol{J}=3$ MOD 4 and $\boldsymbol{n}=\boldsymbol{P}=3 \boldsymbol{J}-1$ so this is a 4-cycle image ($4^{\text {th }}$ option above).

An example. The image to the left is dense enough that it may be difficult to see how many cycles it has. It is an $\boldsymbol{n}=\boldsymbol{P}=490, \boldsymbol{S}=328, \boldsymbol{J}=163$ image. How many cycles does it have and why?

