Two Footballs Challenge Question

The Two Footballs explainer proposed a general rule for creating two footballs images. That rule was:
A general rule. Base two footballs images off of \boldsymbol{J}. These images occur when $\boldsymbol{n}=\boldsymbol{P}=3 \boldsymbol{J} \pm 1$ and $\boldsymbol{S}=2 \boldsymbol{J} \pm 2$ but are most visible when \boldsymbol{J} is not too small.

This rule keys off of \boldsymbol{J}. Four images were shown but three images were of roughly the same size in terms of number of lines (determined by \boldsymbol{S}) and number of vertices in the underlying polygon, \boldsymbol{n}. These challenge questions ask you to focus your attention on \boldsymbol{n} rather than \boldsymbol{J}.

The images shown there were created to highlight the different number of cycles that are possible by following the two footballs rule.

The values of \boldsymbol{n} shown there were: $\boldsymbol{n}=247$ (top right); $\boldsymbol{n}=248$ (bottom right); and $\boldsymbol{n}=250$ (middle right).
Noticeably absent is $\boldsymbol{n}=249$. Of course, this may just be a byproduct of choosing images that show the various cycle outcomes shown in the explainer. Or is there something more going on?

Q1) Is it possible to find values of \boldsymbol{S} and \boldsymbol{J} satisfying the two footballs rule which has $\boldsymbol{n}=\mathbf{2 4 9}$?
Q2) Provide a general condition on \boldsymbol{n} that guarantees that no \boldsymbol{S} and \boldsymbol{J} can be found that satisfy the two footballs rule and is consistent with that value of \boldsymbol{n}.

