

$\boldsymbol{n}=\boldsymbol{P}$ Porcupines

Porcupine polygons have a spiky look, and these two images (from the Generalized Stars explainer) quite clearly qualify as porcupine. (The left has 199 spikes; the right, which we focus on here, has 201.)

Traditional porcupine images are almost half-way around meaning \boldsymbol{P} is the closest number to $\boldsymbol{n S} / 2$ so that the image is single-step after 2 lines. Porcupines require SCF $=1$ so that all subdivisions are used. By
contrast, $\boldsymbol{n}=\boldsymbol{P}$ images use very few of all possible subdivision points and at most \boldsymbol{S} segments. The upper left image is smallest-step after 2 lines and the upper right (blown up below with one minor addition) is smallest-step after 5 lines.

Overview. This image has $\boldsymbol{n}=\boldsymbol{P}=201, \boldsymbol{J}=100$ and $\boldsymbol{S}=499$. Lines that look like they are going from one end to the other just missing the center are NOT single segment lines (like the upper left image). Because $\boldsymbol{S} / 3<\boldsymbol{P}<\boldsymbol{S} / 2$, each "line" contains 2 to 3 segments and there is at least one segment on each part of the VF (although often there are two). Even though there are 499 lines used to create this image, it looks like 201 lines. Roughly speaking, smallest-step occurs every 5 segments and each of these smallest-step moves creates two lines. It is worth initially focusing the VF.

This image closely mirrors the VF. The VF is a single-step counterclockwise drawn 201 point star. The first two segments tell the story: the first line of the VF is from 0-100 just to the right of the center and the second is from 100-200 just to the left of the center. Note: 200 is 1 less than n. Subsequent odd segments decline from 100 by 1 and even segments decline from 200 by 1 so the VF is created in $1 / 2 \cup$ rotation as you can see using this link in Fixed Count Drawing mode.

Most of the time, it takes 5 segments to draw two lines. Each segment spans $\boldsymbol{P}=201$ subdivisions of the VF so that the first two segments end at 402. Since there are 499 segments in a line of the VF, these two segments are on the first line of the VF (or put another way, they are colinear). This looks like a line spanning the image from the top to just right of the valley of the 3-4 scallop. This valley segment is at Level $97=499-402$. The next segment of the image starts at level 97 on the first line of the VF but ends at Level $104=201-97$ of the $2^{\text {nd }}$ VF line from vertex 100 to 200 . THIS IS THE SEGMENT highlighted in the large image (which is why the image is large). Two more segments, one ending at 305 on the $2^{\text {nd }}$ VF line and the other ends at 7 of the $3^{\text {rd }}$ VF line. These three segments are NOT colinear but are close enough that they appear so. The five segments create 2 "lines." These five segments also create a smallest-step.

The point curves are created by Level changes (of 7) per smallest-step. Subsequent 5 segment additions increase Level by 7 each time. The first 14 of these cycles $(70=14 \cdot 5)$ create the curve from the peak at the top vertex 0 to the valley between 6 and 0 (the 6 here is the last peak of the 7 point star, not the $6^{\text {th }}$ of 201 vertices of the underlying polygon). The $70^{\text {th }}$ line is at Level $98(98=14 \cdot 7)$. Similarly, the first two segments of each 5 segment set start at Level 97 (as noted above) then decreases by 7 each 5 segments from here (so note line 7 ends at Level 90 and 12 ends at Level 83, ..., and line 67 ends at Level 6). Peak 3 occurs with line 72 ending at Level 1 (since a decrease of 7 levels from Level 6 is Level 1).

A modified version of the Tracking lines Excel file from 2.3 is provided which shows all 499 line segments. The first 80 are shown below, highlighted to note changes in direction (which are smallest Levels). The table to right summarizes this information. Note that the Level information in the previous two paragraphs is summarized in the Point of star 0 and 3 columns. It is worth noting that, as expected, this summary is symmetric about the vertical line.

Summary of	Point of star	3	6	2	5	1	4	0
Tracking Lines	Peak line	72	144	216	283	355	427	499
Locations Excel file	Level	1	2	3	3	2	1	0
Level just before peak (peak-5):	6	5	4	10	9	8	7	
Level just after peak (peak+5)	8	9	10	4	5	6	7	
Opposite valleyline before peak	70	142	214	281	353	425	497	
	Level there	98	99	100	94	95	96	97
Opposite valley line after peak	74	146	218	285	357	429	2	
Level there	96	95	94	100	99	98	97	

NOTE: If using SLOD mode with Drawn Lines $=1$, set Drawing progress at 1 less than line number to see the line (Drawing progress is start of the line). $\begin{array}{lllllllll}\text { Lines to next peak (sum to 499) } & 72 & 72 & 72 & 67 & 72 & 72 & 72\end{array}$

Near peaks, it only takes 4 segments to draw two lines. The clearest way to show this is to set Drawn Lines = 4 and Step Back two steps so that the last two and first two segments are shown using Single Lines Overlaid Drawing mode (with Drawing progress $=497$). This shows the first and last line of the image since the last two are symmetric to the first two and are thus both collinear. One finds additional 2 lines in 4 segments by setting Drawing progress $=$ Peak line- 2 using the table above. (In the Excel file, these boxed points are where the highlighting changes to the new pattern that holds until the next peak occurs. For example, multiples of 5 are highlighted green to 70 but 74 starts a new pattern in yellow.)

Small segments. Near the peaks the side with 3 segments has small level changes. The smallest change near each peak is shown to right. Note that these level changes also are symmetric. If you think the 7 change in Level line is small, check out the size of the line starting at Drawing progress $=213$ or 285 .

Smallest level change segments in the valley of each petal opposite star point listed

Star point		0		3		6		2		5		1		4
Line \boldsymbol{k}	2	3	69	70	141	142	213	214	285	286	357	358	429	430
Sub End	402	104	396	98	397	99	398	100	399	101	400	102	401	103
Segment	0.806	1.208	27.8	28.2	56.8	57.2	85.8	86.2	114.8	115.2	143.8	144.2	172.8	173.2
VF Start	0	100	87	187	173	72	58	158	144	43	29	129	115	14
VF Stop	100	200	187	86	72	172	158	57	43	143	129	28	14	114
Level	97	104	103	98	102	99	101	100	100	101	99	102	98	103
Δ Level	104	7	92	5	94	3	96	1	98	1	100	3	102	5

A bit more on Levels. Recall that Level 0 points are vertices of the underlying polygon with larger Level numbers being closer to the center of the circle. Levels are created from the concentric circles of subdivision points and these circles are not equally spaced as can readily be seen in the Levels explainer. This is why the point curves based on points that are 7 Level changes from one point to another ($7=5 \cdot \mathbf{P}-\mathbf{2} \cdot \mathbf{S}=1005-998$) appear as curves rather than straight lines.

Peaks and Valleys. Looking carefully, you will note that the 7 peaks differ regarding how pointy they are. This has to do with the image being single cycle. The top (0) is clearly the sharpest. Opposite peak 0 , the valley is the shallowest (Level 97). Peaks 3 and 4 are at Level 1 and the largest valley number is at Level 98 . Peaks 1 and 6 are at Level 2 with largest valley number at Level 99. Finally, Peaks 2 and 5 have peaks at Level 3 (and an adjacent ending point at Level 4) which is why these two peaks appear most rounded. By contrast, the valleys opposite these peaks are deepest at Level 100 (Level 100 and 101 are paired at lines 213,214 and again at 285,286). These findings are also summarized in the tables on p. 2.

MA. Tracking lines. This analysis has leaned heavily on the Tracking Lines in the First Cycle Excel file from section 2.3. This file was developed to analyze spinning needle stars. The new version, Tracking Line Locations, has been modified to include a much larger cycle (of 560 lines) and is separately posted in the $\boldsymbol{n}=\boldsymbol{P}$ section 2.10. The first 80 lines are shown so that one can see what happens near the first drawn peak (3) at line 72 , boxed below.

