What is Regular about the Angles in Rotating Polygons and Stars?

These images are examples of Rotating Polygons and Stars.
Top Right. The first 5 lines of an 18,7-star are shown in red. These lines show a 5,2 -star cracked open between vertex 17 and 0 appears counterclockwise ($\mathbf{(1)}$-drawn.

Bottom Left. The first 7 lines of an $18,5-$ star are shown in red. These lines show a 7,2 -star also cracked open between vertex 17 and 0 that will appear \cup-drawn.

Bottom Right. The first 3 lines of a 20,7-star are shown in red. These lines show a triangle "over-closed" between vertex 1 and 0 that will appear clockwise (\mathcal{C})-drawn.

Claim. Each of the angles in these "almost" polygons or stars that rotate to create an n, J-gram are equal EXCEPT for the point that is not part of the polygon.

The fact that all but one angle is the same follows from the Inscribed Angle Theorem. In our context, the size of the angle is $180 / n$ times the number of open side vertices spanned ($\boldsymbol{n}-2 \boldsymbol{J}$). These images were chosen because all angles are multiples of 10° for $\boldsymbol{n}=18$ and multiples of 9° for $\boldsymbol{n}=20$.
TR. As discussed elsewhere, a regular 5,2 -star has 36° angles as opposed to 40° at vertices $4,7,10$, and 13 . There is formally no angle for the fifth point but if you extend the 0-7 and 10-17 lines they intersect outside (and above) the polygon because 3 , the span between 7 and 10 , is larger than 1 , the span between 17 and 0 . The angle resulting from this intersection, the Implied Exterior Angle, is $20^{\circ}=180 \cdot(3-1) / 18$. (Note that $5 \cdot 36=180=4 \cdot 40+20$.)
BL. A regular $7,2-$ star has $180 \cdot 3 / 7=77.14^{\circ}$ angles as opposed to 80° at vertices $2,5,7,10,12$, and 15 . The Implied Exterior Angle, is $180 \cdot(7-1) / 18=10 \cdot 6=60^{\circ}$. (Note that $7 \cdot 180 \cdot 3 / 7=540=6 \cdot 80+60$.)
BR. An equilateral triangle has 60° angles as opposed to $54^{\circ}=9^{\circ} .6$ at vertices 7 , and 14 . The interior angle between 0 and 1 is $180^{\circ} \cdot(7+1) / 20=9^{\circ} \cdot 8=72^{\circ}$ according to the Interior Angle Theorem. (Note that $3 \cdot 60=180=2 \cdot 54+72$.)

A general rule. The vertex angles of a rotating image are larger than its regular counterpart for \mathcal{U}-drawn images (and its implied exterior angle is smaller), but smaller for \circlearrowright-drawn images (with a larger interior angle).

