Searching for Squares inside a Modified Brunes Star

The Brunes star, a copy of which is shown at the right, was used to introduce the difference between $\underline{\boldsymbol{S} \text { and } \boldsymbol{P} \text {. The image has a fascinating history behind it as noted in the Brunes star }}$ challenge question.

You will note that $(\boldsymbol{n}, \boldsymbol{S}, \boldsymbol{P}, \boldsymbol{J})=(4,2,3,1)$ produced this image. It has (among other things) two internal squares that are plainly visible.

Consider a modified Brunes star given by $\boldsymbol{n}=4, \boldsymbol{J}=1, \boldsymbol{S}>2$ and $\boldsymbol{S}<\boldsymbol{P}<2 \boldsymbol{S}$ with SCF $=1$. The images below are 9 of 10 possible given $3 \leq S \leq 7((4,6,9,1)$ was omitted to save space).

CLAIM: Each such image creates \boldsymbol{S} internal squares. Can you explain why this is true? Hint: How are lines \boldsymbol{k} and $\boldsymbol{S}+\boldsymbol{k}$ related?

