Not all Even Stars are Created Equal

The sharpest angle that can be created from an \boldsymbol{n}-gon depends on whether \boldsymbol{n} is even or odd. As discussed in the Sharpest Stars explainer, the sharpest star using an odd value of \boldsymbol{n} spans a single vertex of the \boldsymbol{n}-gon. By contrast, the sharpest star based on even \boldsymbol{n} spans two vertices because even stars have a point at the bottom (at $\boldsymbol{n} / 2$) so the largest number less than $n / 2$ is a whole number (1) smaller rather than $1 / 2$ when n is odd.

One can always set $\boldsymbol{J}=\boldsymbol{n} / 2-1$ to create the sharpest angle based on an even \boldsymbol{n}-gon but this DOES NOT guarantee that the $\boldsymbol{n}, \boldsymbol{J}$-star thus created will have \boldsymbol{n} points. Indeed, half the time, it has half as many points (as this 10,4-star shows us this star is actually a pentagram).

To see why this is the case and to obtain a general rule for the sharpest \boldsymbol{n}-star, we need to consider two different types of even numbers: those that are divisible by 2 but not 4 and those that are divisible by 4.

\boldsymbol{n} divisible by 4. The first star divisible by 4 has 8 points so it is convenient to use $\boldsymbol{n}=4 \boldsymbol{k}+4$ to represent these values. Half-way around is $\boldsymbol{n} / \mathbf{2}=\mathbf{2 k}+2$ and one less is $\boldsymbol{J}=\mathbf{2 k}+1$ which is ALWAYS an ODD number.

CLAIM: GCD $(4 \boldsymbol{k}+4,2 \boldsymbol{k}+1)=1$ for all $\boldsymbol{k} \geq 1$.
Rationale: All factors of $\boldsymbol{n}=4 \boldsymbol{k}+4$ are also factors of $\boldsymbol{n} / 2=\mathbf{2 k}+2$ (except one less power of 2). Therefore, if \boldsymbol{n} is divisible by some other number \boldsymbol{f} (such as $\boldsymbol{f}=3$ to take the smallest example) then so will be $2 \boldsymbol{k}+2$. This means that $2 \boldsymbol{k}+1$ cannot be divisible by f (the next smaller value divisible by f is $2 \boldsymbol{k}+2-f$, which for $f=3$, would be $2 \boldsymbol{k}-1$).

In this instance, since \boldsymbol{n} and \boldsymbol{J} have no common factors, this value of \boldsymbol{J} will be the sharpest $\boldsymbol{n}, \boldsymbol{J}$-star with \boldsymbol{n} points.
\boldsymbol{n} divisible by $\mathbf{2}$ but not 4 . The first star divisible by 2 but not 4 has 10 points (there is no continuously-drawn 6-point $\underline{\text { star) }}$ so it is convenient to use $\boldsymbol{n}=\mathbf{4} \boldsymbol{k}+6$ to represent these values. Half-way around is $\boldsymbol{n} / \mathbf{2}=\mathbf{2 k}+3$ and one less is $\boldsymbol{J}=\mathbf{2 k}+\boldsymbol{2}$ which is ALWAYS an EVEN number. This poses a problem because $\operatorname{GCD}(4 \boldsymbol{k}+6,2 \boldsymbol{k}+2)=2$ so that even though we can create the $\boldsymbol{n}, \boldsymbol{J}$-star, it will have $\boldsymbol{n} / 2$ points (like the 10,4-star shown above).

The sharpest \boldsymbol{n}-star in this instance occurs when \boldsymbol{J} is 2 less than $\boldsymbol{n} / 2$ or $\boldsymbol{J}=\mathbf{2 k}+\mathbf{1}$. Note that this value of \boldsymbol{J} is necessarily odd, and it has no factors in common with \boldsymbol{n} using the above Rationale. Note that this angle spans 4 vertices rather than 2 when \boldsymbol{n} is divisible by 4 , or 1 when \boldsymbol{n} is odd.

Angle measures. To recap and put this in terms of angles (and organized according to the three images below):
The sharpest angle possible in an \boldsymbol{n}-point star $=($ the number of spanned vertices) $\cdot \mathbf{1 8 0} / \boldsymbol{n}$, or:
$360^{\circ} / n$ if \boldsymbol{n} is divisible by 4 .
$n=12,\left(360 / 12=30^{\circ}\right)$

$180^{\circ} / n$ if n is odd.

$$
n=13,\left(180 / 13=13.85^{\circ}\right)
$$

$720^{\circ} / \boldsymbol{n}$ if \boldsymbol{n} is divisible by 2 but not 4 .

$$
n=14,\left(720 / 14=51.43^{\circ}\right)
$$

