Subdivision Patterns and what this implies about \boldsymbol{S} and \boldsymbol{P} for Centered-Point Flowers

The simplest extension of jump patterns is to simply Jump one vertex $(\boldsymbol{J}=1)$ then $\boldsymbol{I n}$ to the center, \boldsymbol{C}, and back Out to the same vertex. Each move like this carries with it \boldsymbol{S} subdivisions so the image shown is unlike other files in that the center is explicitly included in each jump set. Each vertex of the \boldsymbol{n}-gon gets used twice. Given the $\boldsymbol{n}=3$ vertex frame discussed in the Jumps Primer, this creates the following subdivision endpoints (noted beneath the vertex and center jumps):

0 to 1 to \boldsymbol{C} to 1 to 2 to \boldsymbol{C} to 2 to 3 to \boldsymbol{C} to 3
 $S \quad 2 S \quad 3 S \quad 4 S \quad 5 S \quad 6 S \quad 7 S \quad 8 S \quad 9 S$

Because of the "Jump, In, Out" pattern, each new vertex involves three moves. Notice in particular that the following is true about the multiple, \boldsymbol{m}, in front of \boldsymbol{S} in each case:

Jump If this is the first time vertex \boldsymbol{v} is used, then $\boldsymbol{m}=3 \boldsymbol{v}-2$ ($\boldsymbol{m}=1$ if $\boldsymbol{v}=1, \boldsymbol{m}=4$ if $\boldsymbol{v}=2$, and $\boldsymbol{m}=7$ if $\boldsymbol{v}=3$).
In The move into the center is always of the form: $\boldsymbol{m}=3 \boldsymbol{v}-1$ ($\boldsymbol{m}=2$ if $\boldsymbol{v}=1, \boldsymbol{m}=5$ if $\boldsymbol{v}=2$, and $\boldsymbol{m}=8$ if $\boldsymbol{v}=3$).
Out The move back out from the center to \boldsymbol{v} is of the form: $\boldsymbol{m}=3 \boldsymbol{v}$ ($\boldsymbol{m}=3$ if $\boldsymbol{v}=1, \boldsymbol{m}=6$ if $\boldsymbol{v}=2$, and $\boldsymbol{m}=9$ if $\boldsymbol{v}=3$).
This same pattern works for values \boldsymbol{n} beyond $\boldsymbol{n}=3$, for each vertex \boldsymbol{v} of the \boldsymbol{n}-gon, $1 \leq \boldsymbol{v} \leq \boldsymbol{n}$, as we see for $\boldsymbol{n}=5$ below.

These five "pentagrams with attitude" based on $\boldsymbol{n}=5$ and $\boldsymbol{S}=4$ are each annotated with multiple values \boldsymbol{m} noted above (together with $\boldsymbol{P} / \boldsymbol{S}$ which tells us where the first line lands relative to these multiples of \boldsymbol{S} vertices). Each is more pentagram like than pentagon like because $4 \leq P / S<7.5=3 n / 2$ (half-way around). You should be able to see where the first line ends in each image. Remember that $\boldsymbol{m}=5$ and 8 are at the center so the top middle $5 \frac{1}{4}$ is $1 / 4^{\text {th }}$ of the way out from the center 5 to $\boldsymbol{m}=6$ at vertex 2 (and the top left first 4 lines in terms of \boldsymbol{m} are 4-8-12-1 since 16-15=1). The top 3 have fewer lines because SCF >1. The bottom right is a porcupine ($\boldsymbol{P}=31$ is the same image and $\boldsymbol{P}=30$ is a single line).

