## Creating functionally related equations: a $P(S)$ example

Each of the three parameters in the Center Point Flowers Excel file is unlocked so that you can create functional relationships to test whatever idea you have about how images relate to one another. Think of this as a version of the material discussed in the functionally modified String Art explainer.

Suppose you want test images where $\boldsymbol{P}$ is a linear function of $\boldsymbol{S}: \boldsymbol{P}=\boldsymbol{m} \boldsymbol{S}+\boldsymbol{a}$. You could type this into C 1 directly and change $m$ and a by changing this cell. A more efficient solution is to automate your testing by using the unlocked cells in green beneath the image. Here is a suggested way to accomplish this automation.

Type labels m in F39 and a in F40 then numbers in E39 and E40. Type =E39*B1+E40 in cell C1. This allows you to change C 1 by typing different numbers in E39 or E40. For example, 3 and 0 always produces just the $\boldsymbol{n}$-gon and 1 and 0 produces the VF, an $\boldsymbol{n}$-gon pie cut in $\boldsymbol{n}$ equal pieces. Cells F30:G31 are also unlocked so that you can transfer the numbers to the image area if you want to do so by typing $=E 39$ in $F 30,=E 40$ in $F 31, \mathrm{~m}$ in G30 and a in G31. This is how the images on this page were created simply by changing $\boldsymbol{m}$ and $\boldsymbol{a}$ and then using the $\boldsymbol{S}$ and $\boldsymbol{n} \hat{\nabla}$ arrows.

Irregular internal $\boldsymbol{n}$-stars. If $\boldsymbol{P}$ is a bit smaller than $2 \boldsymbol{S}$ (so set $\boldsymbol{m}=2$ and $\boldsymbol{a}=-1$ ) the first line will end close to the center on the ray from vertex 1 . Here are 4 examples with different $\boldsymbol{S}$ and $\boldsymbol{P}$. Such images require $\boldsymbol{n S}$ lines or $\operatorname{SCF}=3$.


Overhead pyramid vs. 4 -leaf clover. These $\boldsymbol{n}=4$ images share common $\boldsymbol{S}$ by column but have $(\boldsymbol{m}, \boldsymbol{a})=(2,2)$ versus $(1,1)$.


The top row has half as many lines because $S C F=2$ versus $S C F=1$ in the bottom row. One can see that half the subdivision endpoints are used in the top row by looking around the outer edge (with $3,5,8$ and 11 used subdivisions) or by looking at levels along the 4 rays from the origin to the four vertices. The bottom row outer edges are ragged because $\boldsymbol{P}=\boldsymbol{S}+1>\boldsymbol{S}$. To make the outer edge smooth, type 1 in E39, -1 in E40 (or other $\boldsymbol{a}<0$ ) and adjust $\boldsymbol{S}$ so SCF $=1$.

