Finding the Total Number of Connected Line Segments in Centered-Point Flowers

When there are multiple jumps involved, it is no longer true that the maximum number of possible segments is simply $\boldsymbol{n} \cdot \boldsymbol{S}$, often written as $\boldsymbol{n S}$. Now it is a multiple of that number.

In CPF, there are $3 \boldsymbol{n}$ vertices in the vertex frame because moving to the next vertex requires 3 movements, the move to the next vertex, then the move in to the center, then the move from the center back out to that vertex. This file forces $\boldsymbol{J}=1$ so polygons result, but the vertex frame no longer looks like a polygon, but rather a polygonal pie plate with \boldsymbol{n} equal-sized triangular pieces. Since $\boldsymbol{J}=1$, all polygonal vertices are used and VCF $=1$.

The number of lines calculation replaces \boldsymbol{n} with $3 \boldsymbol{n}$ in the SCF calculation discussed in the traditional model.

On the subdivision common factor, SCF: On each of the $3 n$ line segments, we create \boldsymbol{S} subdivisions. The total number of possible subdivision endpoints is thus $3 n \boldsymbol{n}$. Not all of these endpoints are used if \boldsymbol{P} has factors in common with $3 n S$.

Mathematically, the subdivision common factor, SCF, is: \quad SCF $=\mathbf{G C D}(P, 3 n S)$.
The number of lines in the image, L, is then given by: $L=3 n S / S C F$.

