Centered-Point Flower Images when P is a multiple of S

In the traditional string art model, the image is a polygon or star whenever **P** is a multiple of S, $P = m \cdot S$. This is not always true with Centered-Point Flowers. We focus on n = 11 and 12 in order to see what differences emerge when \mathbf{n} is prime versus composite. Instead of being exhaustive with images, this explainer examines some of the general patterns that are laid out in the table showing what happens given $m \le 3n/2$. (Note: $P = m \cdot S$ implies SCF = S so there are S possible lines regardless of S. These images use S = 1, so P = M.)

Images are symmetric across 3n/2. To put it another way, m and 3n-m produce the same static image, with the only difference being the way in which the image is drawn.

When *n* is prime, all polygons and stars with and without rays are represented. The only unusual image occurs at m = 11, SCF = 11. This produces the obtuse triangle at left below that goes from 11-gon vertices 11&0-Center-8-11&0 (the 3 lines end at P = 11, 22, 33).

When n is composite, some n, J-stars that <u>are not possible</u> without rays, are possible with rays (such as those associated with m = 7, 10, 11,and 14). Note however that one cannot draw a 6,2 or 12,3 star without using the center. Instead, one obtains a triangle (m = 12) or square (m = 9) since $12 \cdot 3 = 9 \cdot 4 = 36 = 3n$. The mirror-image 3 equilateral triangles, m = 4 and m = 8, are shown below.

	n = 11		n = 12	
m	Image*	3 n-m	Image	3 n-m
1	VF = 11 RP	32	VF = 12 RP	35
2	11 R	31	6 R	34
3	11 P	30	12 P	33
4	11,2 RS	29	3 T v.1	32
5	VF = 11 RP	28	VF = 12 RP	31
6	11,2 S	27	Hexagon	30
7	11,3 RS	26	12,3 RS	29
8	11,2 RS	25	3 T v.2	28
9	11,3 S	24	Square	27
10	11,4 RS	23	6,2 RS	26
11	Obtuse ∆	22	12,3 RS	25
12	11,4 S	21	Triangle	24
13	11,5 RS	20	12,5 RS	23
14	11,4 RS	19	6,2 RS	22
15	11,5 S	18	12,5 S	21
16	11,5 RS	17	6 R	20
17			12,5 RS	19
18			Vertical	18

*Acronyms: #,## n ,J-star; P-polygon; R-rays; RS-star with rays; S-star; T-equilateral triangle; VF-Vertex Frame. BOLD images are shown below.

Each ribbed star is drawn twice in the (1,4,12),9 lines,4 SCF table (and twice more for m > 3n/2). The bottom two images are sharpest ribbed stars, 11,5 and 12,5, both of which can be drawn with m = 13. (1,11,11),3 lines,11 SCF 13 P/S (1,13,11),33 lines,1 SCF 13 P/S (1,13,12),36 lines,1 SCF