Centered-Point Flower Images when \boldsymbol{P} is a multiple of S

In the traditional string art model, the image is a polygon or star whenever \boldsymbol{P} is a multiple of $\boldsymbol{S}, \boldsymbol{P}=\boldsymbol{m} \cdot \boldsymbol{S}$. This is not always true with Centered-Point Flowers. We focus on $\boldsymbol{n}=11$ and 12 in order to see what differences emerge when \boldsymbol{n} is prime versus composite. Instead of being exhaustive with images, this explainer examines some of the general patterns that are laid out in the table showing what happens given $\boldsymbol{m} \leq 3 \boldsymbol{n} / 2$. (Note: $\boldsymbol{P}=\boldsymbol{m} \cdot \boldsymbol{S}$ implies SCF $=\boldsymbol{S}$ so there are $3 \boldsymbol{n}$ possible lines regardless of \boldsymbol{S}. These images use $\boldsymbol{S}=1$, so $\boldsymbol{P}=\boldsymbol{m}$.)

Images are symmetric across $3 \boldsymbol{n} / 2$. To put it another way, \boldsymbol{m} and $3 \boldsymbol{n}-\boldsymbol{m}$ produce the same static image, with the only difference being the way in which the image is drawn.

When \boldsymbol{n} is prime, all polygons and stars with and without rays are represented. The only unusual image occurs at $\boldsymbol{m}=11, \mathrm{SCF}=11$. This produces the obtuse triangle at left below that goes from 11-gon vertices 11\&0-Center-8-11\&0 (the 3 lines end at $\boldsymbol{P}=11,22,33$).

When \boldsymbol{n} is composite, some $\boldsymbol{n}, \boldsymbol{J}$-stars that are not possible without rays, are possible with rays (such as those associated with $\boldsymbol{m}=7,10,11$, and 14). Note however that one cannot draw a 6,2 or 12,3 star without using the center. Instead, one obtains a triangle ($\boldsymbol{m}=12$)

m	$n=11$		$n=12$	
	Image*	$3 n-m$	Image	$3 n-m$
1	$V \mathrm{~F}=11 \mathrm{RP}$	32	$V F=12 \mathrm{RP}$	35
2	11 R	31	6 R	34
3	11 P	30	12 P	33
4	11,2 RS	29	$3 \mathrm{Tv.1}$	32
5	$\mathrm{VF}=11 \mathrm{RP}$	28	VF = 12 RP	31
6	11,2 S	27	Hexagon	30
7	11,3 RS	26	12,3 RS	29
8	11,2 RS	25	$3 \mathrm{Tv}$.	28
9	11,3S	24	Square	27
10	11,4 RS	23	6,2 RS	26
11	Obtuse Δ	22	12,3 RS	25
12	11,4S	21	Triangle	24
13	11,5 RS	20	12,5 RS	23
14	11,4 RS	19	6,2 RS	22
15	11,5 S	18	12,5 S	21
16	11,5 RS	17	6 R	20
17			12,5 RS	19
18			Vertical	18

*Acronyms: \#,\#\# n,J-star; P-polygon; R-rays; RS-star with rays; S-star; T-equilateral triangle; VF-Vertex Frame. BOLD images are shown below. or square $(\boldsymbol{m}=9)$ since $12 \cdot 3=9 \cdot 4=36=3 \boldsymbol{n}$. The mirror-image 3 equilateral triangles, $\boldsymbol{m}=4$ and $\boldsymbol{m}=8$, are shown below.

Each ribbed star is drawn twice in the table (and twice more for $m>3 n / 2$). The bottom two images are sharpest ribbed stars, 11,5 and 12,5 , both of which can be drawn with $\boldsymbol{m}=13$.

13
P/S
($1,11,11$), 3 lines, 11 SCF

