An Introduction to Larger Jump Set Models

As with smaller jump set models, it helps to start with the VF and with n = 12 so we can talk in terms of hours for vertices. All jump sets with more than 3 jumps and S > 1 must use the web model.

The Excel equation model. Here we use an Excel file that allows exploration of up to 9 jumps in the jump set via equations using the following additional parameters, k is the number of jumps in the set, d is the decline per jump, and c is the initial offset from vertical. These parameters lead to the following jumps:

$$J_1 = INTEGER(n/2)-c$$
 and $J_i = J_1 - (i-1)\cdot d$, for $i = 2, ..., k$.

These equations allow orderly examination of jump sets without having to manually change values.

Organization of these images. This explainer sets d=1 and c=0. These three image have n=12 and the next page has n=13. On both pages k increases from k=4, 5, and 6 at top, middle, and bottom. Note that INTEGER(12/2) = INTEGER (13/2) = 12 so jumps are the same on both pages (but of course they are easier to conceptualize on this page since vertices are hours of a clockface). Given d=1, jumps decline 1 starting at 6=n/2 (c=0).

The 4 jump model is (6,5,4,3) which sums to 18.

The 5 jump model is (6,5,4,3,2) which sums to 20.

The 6 jump model is (6,5,4,3,2,1) which sums to 21.

The VCF and vertices used rules laid out earlier still apply,

$$VCF = GCD(J_1+J_2+...+J_k,n).$$

Vertices used (and lines in VF) = $k \cdot n$ /VCF.

Applying this information to the three VF images on this page we confirm how the images were created on this page.

Top Image. VCF = GCD(18,12) = 6 so Vertices used = 48/6 = 8.

The order of lines in image creation is:

$$0-6-11-3-6-0-5-9-0$$
,

where there is a longer dash between jump sets.

This 8-line image was created in two 4-line jump sets.

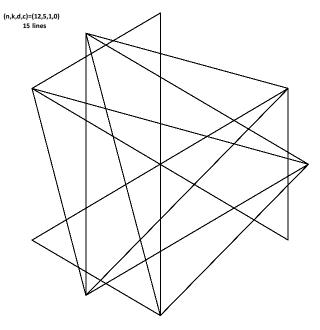
Middle Image. VCF = GCD(20,12) = 4, Vertices used = 60/4 = 15.

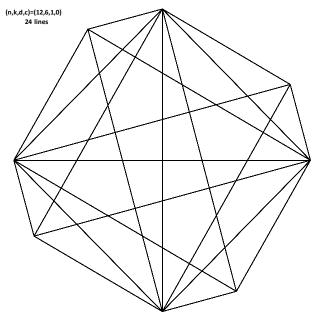
The order of lines in image creation is:

$$0-6-11-3-6-8 - 2-7-11-2-4 - 10-3-7-10-0$$
.

This 15-line image was created in three 5-line jump sets.

Bottom Image. VCF = GCD(21,12) = 3, Vertices used = 72/3 = 24.


The order of lines in image creation is:


$$0-6-11-3-6-8-9 - 3-8-0-3-5-6 - 0-5-9-0-2-3 - 9-2-6-9-11-0.$$

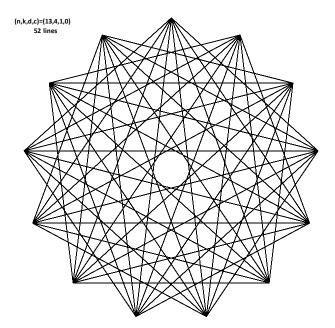
This 24-line image was created in four 6-line jump sets.

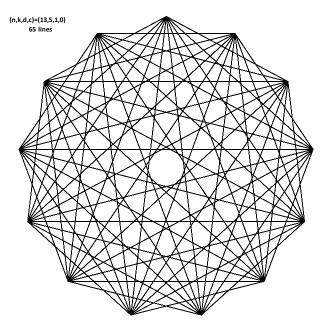
Each of these images has less than $k \cdot n$ lines because VCF > 1. Such issues are less likely the case if n is prime.

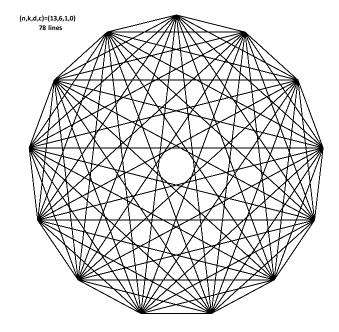
Prime n**.** The only difference here is that these are n = 13 images. Each image has VCF = 1 as will be the case when n is prime (unless the sum of jumps in a set is a multiple of n). Therefore, each image has $k \cdot n$ lines.

An *Excel* assist. When $n \ne 12$ we cannot use hours, but we can easily determine the drawing order using *Excel* in 4 equations (see table notes). This table was created for the top image, but one could readily do 5 or 6 by adjusting the jump set pattern before repeating that pattern (as was done in B6 for k = 4).

Stacked Stars. When VCF = 1, there will be 2k lines at each vertex of the VF. For example, the 8 lines associated with vertex 0 are on either side of the **four green highlighted** cells below.


The lines at each vertex are paired with one another and create stacked stars. For example, there are 4 stars in the top image, one associated with each of the four jump levels 6, 5, 4, and 3. You can add or remove these stars using the \clubsuit arrows in the Excel file. Note that the middle adds a 13,2-star to the top and the bottom adds a 13,1-star (i.e., a 13-gon) to the middle.


Mystic Rose. The bottom image is sometimes called a *Mystic Rose*. Such images have the property that *every vertex is connected to every other vertex* in the image. Given n = 13, there are 12 lines emanating from each vertex or $78 = 13 \cdot 12/2$ lines total (13 vertices, 12 lines per vertex, but each line has 2 ends, so you must divide by 2 to avoid double counting), just as noted on the image.


	_										
Line	Jump	Sum	Vertex	Line	Jump	Sum	Vertex	Line	Jump	Sum	Vertex
1	6	6	6	19	4	87	9	37	6	168	12
2	5	11	11	20	3	90	12	38	5	173	4
3	4	15	2	21	6	96	5	39	4	177	8
4	3	18	5	22	5	101	10	40	3	180	11
5	6	24	11	23	4	105	1	41	6	186	4
6	5	29	3	24	3	108	4	42	5	191	9
7	4	33	7	25	6	114	10	43	4	195	0
8	3	36	10	26	5	119	2	44	3	198	3
9	6	42	3	27	4	123	6	45	6	204	9
10	5	47	8	28	3	126	9	46	5	209	1
11	4	51	12	29	6	132	2	47	4	213	5
12	3	54	2	30	5	137	7	48	3	216	8
13	6	60	8	31	4	141	11	49	6	222	1
14	5	65	0	32	3	144	1	50	5	227	6
15	4	69	4	33	6	150	7	51	4	231	10
16	3	72	7	34	5	155	12	52	3	234	0
17	6	78	0	35	4	159	3				
18	5	83	5	36	3	162	6				
Note	e. The	table	is cut	nto t	hirds	to coi	nserve	on sp	ace.		
	Enter	Enter jump pattern in cells B2 to B5, given a four jur									et.
	Equations in cell: C2 =B2										
				D2	=MOD(C2,13)			Drag down.			
				C3	=C2+B3			Drag down.			

B6 =B2

Drag down.

