Listing Vertices Twice in a Row (Recreating a Zero Jump)

Sheet $7 a$ recreates an idea shown in the zero jumps explainer. Something is going on at the upper right vertex, $(1,1)$, that creates an asymmetry at that vertex. The way that asymmetry is created is simple, it is listed twice in a row. This is equivalent to having the same vertex listed twice in a row (in the polygonal context, $\boldsymbol{J}=0, \boldsymbol{n}$, or multiples of \boldsymbol{n}).
These four images were created from a square with $\boldsymbol{V}=5$, the extra vertex comes from having $(1,1)$ listed twice in a row. Each image has $\boldsymbol{S}=19$ and varies by \boldsymbol{P}. It is worth briefly discussing each image (although if you already feel comfortable with the link above or the additional $\boldsymbol{J}=0$ analysis, you will be able to skim over this very quickly).
$\boldsymbol{P}=\mathbf{1 8}$, top left. This image has curves at all but the (1,1) corner. Since $\boldsymbol{P}<\boldsymbol{S}$, this image includes the VF. The (1,1) corner is not a single subdivision point on the VF, but instead is 20 such points (one more than \boldsymbol{S}). After all, $\boldsymbol{S}=19$ means there are 19 subdivisions between the first time vertex $(1,1)$ is used, and the second time $(1,1)$ is used. The curve at that corner is in fact various length horizontal or vertical lines, all of which either start or end at $(1,1)$.
$\boldsymbol{P}=\mathbf{2 1}$, top right. The bottom and left sides of the VF are not part of the image, but the top and right sides are included. The line from $(18 / 19,1)$ to $(1,18 / 19)$ is because $21=1+19+1$, just like we saw in the $J=0$ analysis when $\underline{S}=5$ and $\boldsymbol{P}=7$.
$\boldsymbol{P}=\mathbf{3 7}$, bottom left. The curve at $(1,1)$ is the same as the three curves for $\boldsymbol{P}=18$ above since $37=18+19$.
$P=47$, bottom right. This is the porcupine image. The only parts of the VF included in the image are individual points.

