Almost Polygonal Sides are not Parallel: Some Square Examples

The images below show spirals created from n = 4 and J = 1 for 4 values of r. The tables beneath each image show coordinates of the endpoint of each line as well as slope and quadrant associated with each line in the spiral.

r = 1	7		ant		r =	8			ant	<i>r</i> =	9			ant	<i>r</i> = 10				ant
line	x	у	Slope of	Quadra	line	x	у	Slope of	Quadra	line	x	у	Slope of	Quadra	line	x	у	Slope of	Quadra
0	0	1	line	ď	0	0	1	line	ď	0	0	1	line	δu	0	0	1	line	ď
1	6/7	0	-1 1/6	T	1	7/8	0	-1 1/7	T	1	8/9	0	-1 1/8	Ι	1	9/10	0	-1 1/9	1
2	0	- 5/7	5/6	IV	2	0	- 3/4	6/7	IV	2	0	- 7/9	7/8	IV	2	0	- 4/5	8/9	IV
3	- 4/7	0	-1 1/4	Ш	3	- 5/8	0	-1 1/5	Ш	3	- 2/3	0	-1 1/6	Ш	3	- 7/10	0	-1 1/7	III
4	0	3/7	3/4	П	4	0	1/2	4/5	Ш	4	0	5/9	5/6	П	4	0	3/5	6/7	П
5	2/7	0	-1 1/2	T	5	3/8	0	-1 1/3	T	5	4/9	0	-1 1/4	Ι	5	1/2	0	-1 1/5	1
6	0	- 1/7	1/2	IV	6	0	- 1/4	2/3	IV	6	0	- 1/3	3/4	IV	6	0	- 2/5	4/5	IV
7	0	0	Vertical	Ш	7	- 1/8	0	-2	Ш	7	- 2/9	0	-1 1/2	Ш	7	- 3/10	0	-1 1/3	III
					8	0	0	0	Ш	8	0	1/9	1/2	П	8	0	1/5	2/3	П
										9	0	0	Vertical	I	9	1/10	0	-2	1
															10	0	0	0	IV

In each image, the odd-numbered lines are in the first and third quadrants and even-numbered lines are in the 2^{nd} and 4^{th} . Notice that this pattern occurs because the spiral is drawn clockwise, starting in the first quadrant. Had we set J = 3, the first line would be in quadrant II with successive lines in III, IV, then I before starting around the second time.

The slope of odd-numbered lines increases in magnitude from |-r/(r-1)| > 1 for the first line. The steepest negatively sloped line (excluding the vertical line when *r* is odd) is the inner-most and has slope -3/2 when *r* is odd and -2 when *r* is even. The *r* = 40 image at the bottom maintains this pattern: the inner-most negatively sloped line has slope of -2.

The opposite pattern emerges in the 2nd and 4th quadrants. The steepest positively-sloped line is always the second line (outermost in quadrant IV) which has a slope of (r-2)/(r-1) < 1. Subsequent positively-sloped lines become flatter and flatter as one moves toward the center of the spiral. The flattest positively-sloped line has slope 1/2 when r is odd and 2/3 when r is even.

If you work outward from the center, you can readily see that even though the x and y coordinates and quadrant

locations change, the slopes of lines depend on how far from the center is the line in question. For example, if you look from line 7 to 1 for r = 7, the slopes are the same as from line 9 to 3 given r = 9. The same pattern exists for spirals with even values of r: the slopes of line 8 to 1 for r = 8 match 10 to 3 for r = 10.

One final way to view this from the inside is to note that there are only 4 locations for the horizontal and vertical "last lines." Each spiral ends at the center and each must either have started at 1/r from the center along either the positive or negative x or y axis. The four alternatives are determined by the remainder once r is divided by 4. This means that the last 8 lines in the r = 40 image have the same slope **AND** quadrant location as the eight r = 8 lines above since both values of r are divisible by 4.

