Almost Polygonal Sides are not Parallel: Some Square Examples

The images below show spirals created from $\boldsymbol{n}=4$ and $\boldsymbol{J}=1$ for 4 values of r. The tables beneath each image show coordinates of the endpoint of each line as well as slope and quadrant associated with each line in the spiral.

In each image, the odd-numbered lines are in the first and third quadrants and even-numbered lines are in the $2^{\text {nd }}$ and $4^{\text {th }}$. Notice that this pattern occurs because the spiral is drawn clockwise, starting in the first quadrant. Had we set $\boldsymbol{J}=3$, the first line would be in quadrant II with successive lines in III, IV, then I before starting around the second time.

The slope of odd-numbered lines increases in magnitude from $|-r /(r-1)|>1$ for the first line. The steepest negatively sloped line (excluding the vertical line when \boldsymbol{r} is odd) is the inner-most and has slope $-3 / 2$ when \boldsymbol{r} is odd and -2 when \boldsymbol{r} is even. The $\boldsymbol{r}=40$ image at the bottom maintains this pattern: the inner-most negatively sloped line has slope of -2 .

The opposite pattern emerges in the $2^{\text {nd }}$ and $4^{\text {th }}$ quadrants. The steepest positively-sloped line is always the second line (outermost in quadrant IV) which has a slope of $(r-2) /(r-1)<1$. Subsequent positively-sloped lines become flatter and flatter as one moves toward the center of the spiral. The flattest positively-sloped line has slope $1 / 2$ when r is odd and $2 / 3$ when r is even.

If you work outward from the center, you can readily see that even though the x and y coordinates and quadrant locations change, the slopes of lines depend on how far from the center is the line in question. For example, if you look from line 7 to 1 for $\boldsymbol{r}=7$, the slopes are the same as from line 9 to 3 given $r=9$. The same pattern exists for spirals with even values of r : the slopes of line 8 to 1 for $r=8$ match 10 to 3 for $r=10$.

One final way to view this from the inside is to note that there are only 4 locations for the horizontal and vertical "last lines." Each spiral ends at the center and each must either have started at $1 / r$ from the center along either the positive or negative x or y axis. The four alternatives are determined by the remainder once r is divided by 4 . This means that the last 8 lines in the $r=40$ image have the same slope AND quadrant location as the eight $\boldsymbol{r}=8$ lines above since both values of \boldsymbol{r} are divisible by 4 .

