7.4. Symmetry across a Cycle

One of the points made in Section 7.3 was that the level changes are symmetric about $S / 2$. A closer look suggests that level changes are symmetric about $\boldsymbol{C} / 2$ where \boldsymbol{C} is the number of lines in a cycle (recall from Section $5.1, \boldsymbol{C}=\boldsymbol{S} / \mathrm{GCD}(\boldsymbol{S}, \boldsymbol{P})$). The vertical symmetry discussed in Section 6.3.1 is based on noting that the end of the last cycle looks like the start of the first cycle, and so forth for the second line and the second to last line. Putting these ideas together we see that a cycle is symmetric about its midpoint. This symmetry extends beyond symmetry of Levels; it can be described in terms of a line of symmetry that must always exist in the cycle. That line of symmetry is from the point $\boldsymbol{E} / 2$ to $(\boldsymbol{n}+\boldsymbol{E}) / 2$ where \boldsymbol{E} is the end of the first cycle (Section 5.2). This line of symmetry is overlaid on the first cycle in each image below.
All images share a common $\boldsymbol{P}=137$ and $\boldsymbol{J}=13$; \boldsymbol{n} varies by row and \boldsymbol{S} varies by column. Since \boldsymbol{P} is prime, $\boldsymbol{C}=\boldsymbol{S}$.

$$
\begin{gathered}
\substack{(\mathrm{n}, \mathrm{~S}, \mathrm{P}, \mathrm{~J}) \\
(29,20,137,13) \\
26}
\end{gathered} \quad 27 \quad 28 \quad 29 \& 0
$$

$$
\begin{aligned}
& (\mathrm{n}, \mathrm{~S}, \mathrm{P}, \mathrm{~J}) \\
& (29,21,137,13) \quad 27
\end{aligned}
$$

just as they were when $\boldsymbol{n}=28$ and 29 . By contrast, the midpoint level for the right two images is 5 .

