9.5. Comparing Single-Step with Smallest-Step using Three Shape-Shifting Triangles

Both top row images show subdivision dots and the first 7 lines, and both look quite similar as both are versions of Three Shape-Shifting Triangles (3SST). The left, from Section 8.4, has $570=30 \cdot 19$ dots while the right has $380=20 \cdot 19$. All of the dots are used on the left, but only $1 / 10^{\text {th }}$ of the dots are used on the right because $S C F=10$.

Steps. The left 3SST image is single-step of length 7 (Section 8.5.1) meaning that the $7^{\text {th }}$ endpoint lands on subdivision 1 (since $7 \cdot 163=1141=2 \cdot 570+1$). The right 3SST image is smallest-step of length 7 (Section 9.4) because the $7^{\text {th }}$
2080
19
38080 endpoint, at subdivision $210=7.30$ is the closest endpoint to the top (380\&0) that is also a multiple of 10 (since $S C F=10$). The snapshot to the right (from Excel file 10.0.1) shows the subdivision endpoints "near" the top. The two possible candidates for smallest-step are 170 and 210 and the $7^{\text {th }}$ endpoint is 170 if one of two parameters change: $\boldsymbol{P}=350=380-30$ or $\boldsymbol{J}=9=20-11$ (see Section 6.2).

Cycles. As noted in Section 8.6 , the left is a 30 -cycle, $\cup 11$-times around image, with 81 steps. At right is a $\cup 2$-cycle, 1time around image of about 5 steps (5 is closest to 38 lines/7). Lines 10 and 29 are the isosceles triangles vertical bases.

(20,19,30,11)
171
177^{70}

