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Abstract 

Traditional string art creates curves from 

straight lines using nails, string, and a 

simple counting rule such as connect 

every 7th nail. Different counting rules or 

nail locations produce new images, but 

each change requires significant setup 

time. By contrast, electronic string art, 

ESA, images change instantaneously as 

parameters change. This allows users to 

rapidly adjust values and quickly test 

hypotheses even if those hypotheses are 

only incompletely understood. Such 

purposeful play can lead to learning, 

even if that learning is informal in nature. 

1. The Four ESA Parameters 

Electronic String Art is a suite of models, 

each based on a closed set of  

connected line segments using a simple 

counting rule [1]. ESA has two image 

creation modalities, web and Excel, that 

complement one another [2]. 

ESA images are framed on regular n-

gons or n,J-star. n and J determine the 

vertex frame, VF, shown in blue in Fig 1. 

Each line of the VF is subdivided into S 

equal subdivisions creating at most n·S 

possible subdivision endpoints (think nail 

locations), shown as red dots in Fig 1. 

The image is created by drawing a line 

connecting every Pth endpoint starting at 

the top. This process is repeated until the 

top is once again achieved in either n·S 

or fewer lines. The bottom row shows two 

15-line ESA images using this algorithm 

with first line overlaid in red. 

Fig 1. Examples showing ESA images 

created given n = 5, S = 3, and P = 4 for 

J = 1 left and J = 2 right. Top row shows 

VF in blue with 3 equally spaced 
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subdivisions per VF line and first line 

drawn (shown in red) based on counting 

rule that states: Draw a line connecting 

every 4th red subdivision endpoint. The 

bottom row shows the resulting images.  

This simple structure allows wide latitude 

to explore ideas even if those ideas are 

incompletely understood. Users can 

rapidly test hypotheses and search for 

similarity simply by playing with the 

model. In the process, users are able to 

visually understand mathematics more 

deeply, even if that understanding is 

simply a by-product of such play. This 

purposeful play is consistent with Stein’s 

Triex: Explore, Extract, Explain  view of 

how to teach mathematics [3].  

Images change as underlying parameters 

change and those changes are based on 

mathematical rules. But there is a second 

form of dynamism in ESA. It involves how 

a specific image is drawn, line by line.  

2. Issues of Commonality 

The completed image connects start of 

the first line with the end of the last line 

using a simple counting rule. As such, 

there are two ways to draw each static 

image. Additionally, the number of lines 

required, and how subsets of those lines 

relate to one another depend on 

commonality between the parameters.  

2.1 Distinct Images 

An ESA image has one line in and one 

line out of the top of the image. The 

values of n, S, P, and J determine how 

this first line (shown in red in Fig 1), and 

hence the image, is drawn. Therefore, 

there are two ways to draw any image. 

This is examined in Fig 2 which shows all 

distinct images given n = 5 and S = 3 for 

1 ≤ P < 15 = n·S. Between Figs 1 and 2, 

there are 10 distinct ESA images.  
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P 15-P Cycle Total

A 1 14 3 15
B 2 13 3 15
A 3 12 1 5
C 5 10 3 3
D 6 9 1 5
E 7 8 3 15

Fig 1 4 11 3 15

*Notes: J and 5-J given n = 5.                  

P and 15-P given nS = 15.
(J 0, P 0) and (n-J 0, nS-P 0) are drawn 

in one direction and (J 0, nS-P 0) and            

(n-J 0, P 0) are drawn in the other.

Fig 2 

Row

J =  1, 4 Left*      

J = 2, 3 Right Lines in 

 
Fig 2. Distinct ESA images: n  = 5, S = 3. 
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We see that one may restrict J < n/2 and 

P < n·S/2 because larger values of J and 

P only alters the direction that the image 

is drawn. We also see that if P is a factor 

of S, then the image is simply the VF 

although note that if P = 1 or 14 the VF is 

drawn in 15 connected segments, but if P 

= 3 or 12, the VF is drawn in 5. 

2.2 Vertex Common Factor 

The first form of commonality is in the VF 

between the number of vertices, n, and 

the number of jumps between vertices, J. 

This is called the vertex common factor, 

VCF = GCD(n, J) where GCD is the 

greatest common divisor function. The 

number of used vertices and lines in the 

VF is n/VCF.  

The simplest example of VCF > 1 is a 

6,2-star whose VF is an equilateral 

triangle because the circuit is complete 

once the even vertices are connected 

with one another. A 6,2-star with 6-points 

cannot be continuously drawn. VCF > 1 

is also the reason that a 12,5-star is the 

only distinct ESA star with 12-points (as 

noted above, a 12,7-star simply draws 

the VF in the reverse order). In general, 

as mentioned in the Fig 2 notes, an n,J-

star and an n,(n-J)-star simply differ in 

the direction in which the star is drawn. 

2.3 Subdivision Common Factor 

Given n/VCF used vertices in the VF and 

S subdivisions per VF line, there are 

S·n/VCF possible subdivision endpoints 

that can be used in the image. The 

second form of commonality is the 

subdivision common factor, SCF, where 

SCF = GCD(P, S·n/VCF). The number of 

used endpoints (and lines) in the image 

is S·n/VCF/SCF. In Fig 2 Row C, the  

images are both isosceles triangles 

connecting subdivision endpoints 5, 10, 

and 0 since SCF = 5. P = 3 creates Row 

A connecting subdivision endpoints 3, 6, 

9, 12, and 0 and the image is the VF but 

P = 6 connects endpoints 6, 12, 3, 9, and 

0; a pentagram results if J = 1, and a 

pentagon results if J = 2. In each case, 

this happens because SCF = 3.  

2.4 Cycles (Cycle Generator) 

The image will have rotational symmetry 

equal to the number of polygonal vertices 

included in the final image. Given this, in 

order to understand an image, one need 

only consider that part of the image 

spanning from the top of the image (the 

start of the first line) to the next time a 

polygonal vertex is encountered using 

the counting rule described in Section 1. 

For simplicity we call such a sub-image a 

cycle. [It is worth noting at the onset that 

it is mathematically more accurate to call 

this a cycle generator because the entire 

image is a cycle.] In Fig 1 the first cycle 

ends at vertex 4 for the left image and 

vertex 3 for the right image if P = 4. The 

next cycle ends at vertex 3 at left and 1 

at right, and so on. As noted in Fig 2, the 

same static image occurs given P = 11 in 

which case the first cycle ends at vertex 

1 for the left and vertex 2 for the right.   

In general, the number of lines in a cycle 

is S/GCD(S, P). As a result, given S = 3 

in Fig 2, P = 3, 6, 9, and 12 produce one- 

line cycles; all other P have 3-line cycles.  

3. Searching for Similarity 

From an educational perspective, the 

best question you can ask is: Can you 

find similar but not identical images to an 

image you find interesting?  

Suppose, for example, that you like the 

spiky 5-needle image in Fig 1, (n, S, P, J) 

of (5,3,4,2). You might quickly find similar 

images such as (7,3,4,3), or (7,3,5,2), or 
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(11,3,4,5). In each case this involved 

changing just 2 of the 3 parameters n, P, 

and J from their Fig 1 values while 

maintaining S = 3. If one allows larger S 

values then the images become more 

complex, nonetheless, some nice spiky 

images are still possible as Fig 3 shows. 

The key is to find a subdivision endpoint 

that is very close to the vertical diameter. 
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Fig 3. Image given (n,S,P,J) = (9,7,17,4) 

with 7-line first cycle overlaid in red.  

In Fig 3, the 3rd subdivision endpoint from 

each end of every line of the VF is very 

close to another endpoint on the VF. The 

pair that are very close to the vertical 

diameter are P = 17 and P = nS-17 = 46. 

The version shown is the 3rd point of the 

3rd VF line (since 17 = 2·7+3), just to the 

right of the centerline. The end of first 

cycle is at vertex 5. The other drawn 

version, P = 46 is the 4th point on the 7th 

VF line (since 46 = 6·7+4), just to the left 

of the centerline and the first cycle in this 

case would end at vertex 4.  

4. Some Interesting Images 

Playing with these parameters produces 

a wide range of images. Here are a few 

examples. Fig 4 is a 138-line spinning 

needle star that uses all its vertices but 

only 1/5th of its 690 subdivision endpoints 

since SCF = 5. These endpoints and the 

first line are shown in red. Given this first 

line, it is clear the image is drawn  

counterclockwise, ⭯. If you want to see it 

drawn clockwise, ⭮, change to J = 17. 

Fig 4. Spinning Needle Star image given 

(n,S,P,J) = (30,23,265,13). 

Figs 5 and 6 show images with first cycle 

overlays in red. They differ by a single 

subdivision per VF line (S = 11 vs. 12).  

23 P

Line 11

Fig 5. Needle Star with Shields image 

given (n,S,P,J) = (23,11,71,12). 
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Fig 6. Stacked Circles image given 

(n,S,P,J) = (23,12,71,12). 

Because the first cycle ends at vertex 1 

in Figs 5 and 6, both are drawn in a ⭮ 1-

time-around fashion. The same would be 

true for other values of S because P and 

J are modular multiplicative inverses 

(MMI) modulo n meaning that 71·12 = 

k·23+1 for some k (here k = 37). This is 

like the Ticking Clock images in [4].  

The 570 line Fig 7 provides a very 

different visual interpretation of MMI. 

Here 7 and P are MMI mod n·S (7·163 = 

1141 = 2·570+1) meaning that the end of 

the 7th image line is the 1st subdivision on 

the 1st VF line, just beneath and to the 

right of the top of the image at the end of 

the 7th red line. I call such sub-images 

single-step. Given this, the 14th endpoint 

is the 2nd subdivision endpoint, and so 

on. The image is completed after about 

81 steps (since 81 = 567/7). Note that J 

is not part of this MMI calculation so that 

changing J creates additional single-step 

images (try J = 7). These images are 

best viewed dynamically using links in 

the Notes [2]. 

44 P

Line 7

Fig 7. Three Shape-Shifting Triangles 

image given (n,S,P,J) = (30,19,163,13). 

Fig 8 is a divisible star. This 250-line 

image uses every vertex, VCF = 1, but 

only one 248th of possible subdivisions, 

SCF = 248, because n = P. The first 3 

lines, shown in orange form an “almost-

equilateral triangle” the peak of which 

rotates ⭯, and is a smallest-step [1]. 

Fig 8. An example of the illusive 6,2-Star 

given (n,S,P,J) = (248,250,248,83). 
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The entire image is created by 83 of 

these almost equilateral triangles rotating 

⭯ plus 1 line (250 = 3·83+1) which is 

why the last triangle ends at “vertex 4” of 

the “6,2-star” so that the final line brings 

us back to the top and completes the 

circuit. This description is best 

understood using the web link to watch it 

get drawn dynamically. To see a virtually 

identical image get drawn ⭮ in 248 lines, 

change to (250,248,250,83), since 248 = 

3·83-1. 

5. Jump Sets 

Jump sets are an extension of the basic 

model that creates a more complex VF. 

The easiest way to explain jump sets is 

to set n = 12 since then we can talk in 

terms of hour jumps. J = 2 produces a 

hexagon connecting 2-4-6-8-10-0 (read - 

as connect) since VCF = 2. A jump of 4 

produces a triangle connecting 4-8-0 

since VCF = 4. But what if a jump of 2 is 

followed by a jump of 4? 

5.1 VCF with Jump Sets 

The VF of the two-jump set, J1 = 2, J2 = 4 

is 2-6-8-0. If J1 = 4, J2 = 2 the VF is 4-6-

10-0. If J1 = 5, J2 = 1 the VF is 5-6-11-0. 

All three VFs are quadrangles (in fact all 

are rectangles) since the circuit is 

completed once the top is achieved at 

the end of a set. If J1 = 6, J2 = 3 the VF is 

6-9-3-6-0-3-9-0. The 8-line 4-leaf clover 

VF uses only 4 vertices because each 

used vertex is used twice. If you draw the 

VF, you will note that both diameter lines 

are drawn twice, once from one end, and 

once from the other.  

Consider J1 = 3, J2 = 4. Individually, 

these produce a square and a triangle, 

but together their VCF = 1. The first few 

lines of the VF are 3-7-10-2 … . The VF 

has 24 lines with all vertices used twice. 

Fig 9 shows a four-color example of this 

image based on Chapter 17 of [1]. If you 

look carefully, you can see that the VF 

has 3 squares and 4 equilateral triangles. 

(S, P) Repeated Hour Jumps
(53, 11) (3, 4)
(53, 17)
(54, 23)
(56, 29)

Vertices =

Fig 9. Image based on a double jump set. 

This same idea works with different n and 

a larger number of jumps in the jump set 

k > 2. The general rule for lines in the VF 

in this instance is k·n/VCF with VCF = 

GCD(J,k·n) and set sum J = J1+J2+…+Jk. 

5.2 Zero Jumps 

The swirling wreath around the picture on 

the first page is based on the three-jump 

set (3,4,0). Compare that image (minus 

the picture, of course) with Fig 9. The 

end of the second jump is at 7 in both 

cases. In Fig 9, the next jump is to 10 

which is why you can see a curve 

spanning vertices 3-7-10 that is absent in 

the three-jump version. The third jump 

remains at vertex 7. This is most clearly 

seen by the red and white swirl and by 

the white triangular areas like the one 

bounded by the line from 5 to 8 and the 

15° angle, 10-7-11. This 15°-75°-105° 

triangle is formed by J3 = 0. The second 
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set of curves in the swirl is from 7-10-2 

but that is the third set of curves in Fig 9. 

Suppose we say that the swirl image on 

the first page is ⭮ going toward the 

center. If you want to change to a ⭯ swirl 

going to the center then simply change to 

a three-jump set of (4,3,0). These swirls 

point to the fact that jump set images 

need not have the vertical symmetry that 

exists for single jump ESA images. It is 

worth noting that the four-color models 

are not available on the web version and 

a zero jump is attained in the web version 

by setting J = n [1,2].    

5.3. Fibonacci 

Larger jump sets are only available using 

the web version [2] and are discussed in 

Chapter 18 of [1]. Among these, many 

images using Fibonacci numbers as jump 

sets are beautiful as static images, but 

are particularly compelling to watch get 

drawn for those that are single-step.  

The first two Fibonacci-based images 

have a k = 7 jump set using the first 7 

Fibonacci numbers, 1,1,2,3,5,8,13 so the 

set sum is J = 33. Each is also single-

step of length 3 and each shows the first 

3 lines in orange.  

560-line Fig 10 sets n = 132 = 4·33 and S 

= 20. The VF has 28 = 7·4 lines and 560 

= 28·20 subdivision endpoints. P = 187 

because 3·187 = 561 (therefore 3 and 

187 are MMI mod 560).  

2401-line Fig 11 sets n = 231 = 7·33 and 

S = 49. The VF has 49 = 7·7 lines and 

2401 = 49·49 subdivision endpoints. P = 

1601 (3·1601 = 4803 = 2·2401+1 so that 

3 and 1601 are MMI mod 2401). 

Other single-step images are, of course 

possible. For example, if we start from 

Fig 11 and change to P = 1334, a 7,3-

star is formed that is single-step of length 

9 (9·1334 = 12,005 = 5·1601+1). Other 

MMI pairs are found by backtracking 

Euclid’s Algorithm as discussed in 

Chapter 24 of [1].  

 

Fig 10. A Fibonacci-7 Cross. 

Fig 11. A Fibonacci-7 7,2-gram. 

The values used to create Fig 11 were 

chosen to highlight a way that you can 

create “flickering videos” from images 

such as these. Note that 2401 = 74. This 

means that every 7th P value has lower 
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line density because SCF = 7, 72, or 73 

and all other P have SCF = 1. Put 

another way, you can watch the image 

change in waves by scrolling across P 

values and 6 out of 7 will be at full 

density. How many distinct images are 

there? Set P = 1,200 and change to 

1,201. Both are the same static image; 

the only difference is the direction in 

which the image is drawn (see notes to 

Fig 2). (P = 1200 is a porcupine image [1] 

as is the J = 1 Row E image in Fig 2.) 

There are 1,199 distinct images in this 

situation (since 1 and 7 both produce the 

vertex frame as discussed in Fig 2).  

The bird-beak in Fig 12 is created by 

setting n = 13, the size of the 7th 

Fibonacci number. The beak is created 

with the last half of the set listed 

backward (with last jump removed) 

1,1,2,3,5,8,13,13,8,5,3,2,1 so that J = 65 

in 13 jumps. Since J is a multiple of n, 

the image is completed in a single jump 

set. This image is also single-step of 

length 2 because S = 13 and P = 85.  

Fig 12. Double Fibonacci Bird-beak. 

It is instructive to work through the jumps 

involved in Fig 11. The point of the beak 

at vertex 7 is at the end of the 4th jump. It 

is also the location of the pair of 13 jumps 

(zero jumps). The bird-beak is another 

example of a porcupine image.  

6. Non-Polygonal Vertices 

One benefit of working with regular 

polygons is that users need not worry 

about where the vertices are located in 

the (x, y) plane. Users can explore as 

soon as they can point and click, and 

they can watch images change as n or J  

change.  

Users can create ESA images with 

vertices of their own choosing, but the 

mathematical bar is higher since the user 

must place those vertices in the (x, y) 

plane. This is based on [5] which is 

expanded on in Chapter 19 of [1].  

6.1 How V replaces n and J 

S and P work just as in the polygonal 

model but a new variable V (for Vertices 

used) replaces n and J. The key to this 

version of ESA is that the vertices must 

form a closed loop. With the vertices of a 

regular polygon this is true but went 

unsaid; here it must be explicitly noted in 

order to understand how the image 

emerges from the vertex frame. The 

easiest way to explain how this works is 

to show how an image like the V = 20 

cube in Fig 13 is created from the 

dashboard shown in Table 1. 

After the last used vertex, the next vertex 

is always vertex 1, here the point (10, 0). 

Given this, a triangle results if V = 3. 

When V = 5, the comma could be the 

start of the right side or the top. By V = 8 

we see that the top is complete and by V 

= 12 the right side is complete as well. 

One might think that by V = 16 the image 

is complete but that does not happen 

until V = 20.  
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As you examine the progression of Fig 

13 images, you may wonder why V = 9 

looks less complete than V = 8. The 

reason is straightforward – vertex 9 is the 

same as vertex 1; the result is a zero 

jump like discussed in section 5.2 and 

also at vertex 7 in the Fig 12 bird-beak.   

20 19 11

V, # of vertices 

used. V ≤ 21

S, # of 

subdivisions 

per side

P, # of 

subdivisions 

between Points
You can change the yellow cells

Note : Keep V*S<1000 (or pattern will not repeat)
Vertices X Y

1 10 0

2 0 0

3 0 10

4 10 10

5 14 14

6 4 14

7 0 10

8 10 10

9 10 0

10 14 4

11 14 14

12 10 10

13 0 10

14 0 0

15 4 4

16 4 14

17 4 4

18 14 4

19 14 14

20 10 10

999

999 above means "vertex not used"

Table 1. Dashboard for creating images 

based on user-determined vertices. 

6.2 Creating your own Initials 

For students who are just learning about 

Cartesian coordinates, asking them to 

create their own initials in string art, 

provides an exercise that can spark 

excitement and creativity.  

V  = 3 V  = 5

V  = 8 V  = 9

V  = 12 V  = 13

V  = 16 V  = 20
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0 2 4 6 8 10 12 14
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12

14

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

Fig 13. Creating a cube based on Table 

1. Images for various values of V. 

Section 19.6 of [1] provides suggestions 

for laying out initials. Among them, the 

most important are to start in the middle, 

use graph paper, and cell reference 

vertices that are used multiple times. The 

GA shown in Fig 14 used 33 vertices as 
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noted beneath the image. The image 

started at the connection between G and 

A and returned to that vertex four more 

times at vertices 19, 20, 28 and 33. The 

19, 20 (after G was created) and 33, 1 

pairs of vertices form zero jumps. This 

ensures that there are no curves 

connecting the G to the A (since S > P). 

The Excel file used to create this image 

allows up to 40 vertices and those 

vertices need not coincide by color [1]. 

33 47 34 Red 1551 V; # of vertices used. V < 41

33 47 25 Green 1551 S; # of subdivisions per side

33 47 17 Blue 1551 P; # of subdivisions between Points

33 41 8 Gold 1353 You can change the yellow and pink cells

V S P
You can link to gray 

cells to pink vertices
Lines per color (should be < 2000)

Fig 14. An example of creating initials 

using ESA. 

7. Summary 

Electronic String Art combines art and  

mathematics in a way that allows users 

to learn mathematics more deeply, 

simply by adjusting parameters and 

watching what happens. ESA was 

created for independent explorations but 

it is useful in more formal K-12 classroom 

settings to support teaching of various 

topics in a visually appealing way.  

Notes 

The links below take you directly to the 

web version [2] set to that figure. There 

are various Drawing Modes, start with 

Fixed Count Line Drawing, FCLD, and 

set Drawn Lines, DL, as noted then 

adjust drawing speed to your taste.  

For Fig 4, DL = 2.       For Fig 5, DL = 11.  

For .Fig 6, DL = 12.    For Fig 7, DL = 7.  

For Fig 8, DL = 3.       For  Fig 10, DL = 3. 

For Fig 11, DL = 3.      For Fig 12, DL = 2. 
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