Intertwined 6,2-Stars

The VF given the four jump set pattern of $\mathrm{J}(11,19,23,13)$ with $\boldsymbol{n}=36$ is shown at left. All angles produced are multiples of 30° so that the images are perfect $6,2-$ stars unlike those examined in E12.3. The image has 60° rotational symmetry and the first five lines of the VF connect vertices $0,11,30,17,30,5$. These lines produce an angle set of $30^{\circ}, 30^{\circ} .0^{\circ}, 60^{\circ}$ at vertices at $11,30,17$, and 30 , respectively. These first four angles have been labelled in the curve-tip star image to the right as $\mathbf{1 , 2}, \mathbf{3}$, and $\mathbf{4}$ (based on $S=41$ and $P=13$). If you follow this angle set pattern, the third angle in the set is always 0° and it emanates from the vertex that is just under a multiple of 6 (the 0° vertex order is $17,11,5,35,29,23$). The second set of four jumps starts at vertex 30 , the third at 24 , fourth at 18 , fifth at 12 and sixth at 6 . Each of the 12 used vertices is used twice in creating the final image (used vertices $=\boldsymbol{k} \cdot \boldsymbol{n} / \mathrm{VCF}=4 \cdot 36 / 6=24$).

The images on the next page show 6 of the hundreds of full density ($\mathrm{SCF}=1,984$ line) images obtained by clicking Play Sequence using the above link. They were chosen so you can see that the swirl direction changes as \boldsymbol{P} changes. Bottom right is the porcupine image in this situation.

253 bottom

43 top 419 bottom

125 top
491 bottom

