21.3. What is the Product of Two Numbers that Differ by an Even Amount? (This looks at times table patterns along diagonals.)

Here is a different way to look at a times table . It is provided to highlight a pattern in numbers that differ by an even amount. It is based on a formula used in a couple of places in ESA called the Difference between Squares formula. That formula is $(x+y) \cdot(x-y)=x^{2}-y^{2}$. This works for any x and y, not just whole numbers. Let $\boldsymbol{a}-\boldsymbol{b}=2 \boldsymbol{k}$ where $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{k} are whole numbers. This means that the difference between \boldsymbol{a} and \boldsymbol{b} is an even number.

The number $\boldsymbol{c}=\boldsymbol{b}+\boldsymbol{k}$ is halfway between \boldsymbol{a} and \boldsymbol{b} but so is $\boldsymbol{c}=\boldsymbol{a}-\boldsymbol{k}$. Regrouping both we have $\boldsymbol{a}=\boldsymbol{c}+\boldsymbol{k}$ and $\boldsymbol{b}=\boldsymbol{c}-\boldsymbol{k} . \quad-\mathbf{- 3}^{\mathbf{2}}$

The product of \boldsymbol{a} and \boldsymbol{b} is thus:
Distributing the right hand side we obtain:
Distributing once again we obtain:
Cancelling common terms:

$$
\begin{aligned}
& a \cdot b=(c+k) \cdot(c-k) \\
& a \cdot b=(c+k) \cdot c-(c+\mathrm{k}) \cdot k \\
& a \cdot b=c^{2}+k \cdot c-c \cdot k-k^{3} \\
& a \cdot b=c^{2}-k^{2}
\end{aligned}
$$

How does this relate to the highlighted cells? Look at the numbers inside each red oval. \boldsymbol{c} Yellow cells are perfect squares. These are the values of \boldsymbol{c}, the center number. $\boldsymbol{k}=\mathbf{1}$ Green cells are 1 less in one direction, 1 more in the other. So, subtract 1. $\boldsymbol{k}=\mathbf{2}$ Blue cells are 2 less in one direction, 2 more in the other. So, subtract $4=2^{2}$ $k=3$ Tan cells are 3 less in one direction, 3 more in the other. So, subtract 9
This same pattern works regardless of where the center \boldsymbol{c} is located! Look to the adjoining cells at left above or at right below.

20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380	400																												
19	38	57	76	95	114	133	152	171	190	209	228	247	266	285	304	323	342	361	380	399		18	36	54	72	90	108	126	144	162	180	198	216	234	252	270	288	306	324	342	360	396					
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		17	34	51	68	85	102	119	136	153	170	187	204	221	238	255	272
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---																																
289	306																																														
16	32	48	64	80	96	112	128	144	160	176	192	208	224	240	256																																
272	288															15 14	14	28	42	56																											
:---	:---	:---	:---		13	26	39	52	65																																						
:---	:---	:---	:---	:---																																											

12 \begin{tabular}{|l|l|l|l|l|l|l|}
\hline 11 \& 24 \& 36 \& 48 \& 60 \& 72 \& 84 \\
\hline 11 \& 22 \& 33 \& 44 \& 55 \& 66 \& 77 \\
\hline

 $\begin{array}{llllllll}11 & 22 & 33 & 44 & 55 & 66 & 77 & 88 \\ 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80\end{array}$

\hline 9 \& 18 \& 27 \& 36 \& 45 \& 54 \& 63 \& 72 \& 81 \& 90 \\
\hline

 8 7

6 \& 12 \\
5 \& 10
\end{tabular} $\begin{array}{ll}4 & 8 \\ 3 & 6\end{array}$

2

