Truncated Stars and Stars with Eyelets

One of the simplest images in ESA is a star that has lines equidistant from each star's points. If \boldsymbol{n} and \boldsymbol{S} are odd, \boldsymbol{J} is coprime to \boldsymbol{n}, and $\boldsymbol{P}=2$, such an image is the result. The top row shows three such images.

The next two rows show E16 double jump models where the first jump is 1 and the second jump is chosen to create a "version" of the top row. To focus on the underlying structure, each image shows the vertex frame since $\boldsymbol{S}=\boldsymbol{P}=1$. The second row shows tilted versions of the image above with the star-tips truncated (or removed). The third row shows the same stars suspended on the interior of the image with triangular eyelets attached to each star-tip.

How much tilt do these images show? If you have an image which is either a truncated star or star with eyelets, let \boldsymbol{J}_{1} and \boldsymbol{J}_{2} be the two jumps. Let the minimum of $\left(\boldsymbol{J}_{1}, \boldsymbol{J}_{2}, \boldsymbol{n}-\boldsymbol{J}_{1}, \boldsymbol{n}-\boldsymbol{J}_{2}\right)=\boldsymbol{m}$. The previous images all had $\boldsymbol{m}=1$ since $\boldsymbol{J}_{1}=1$. In these examples, the "top" point of each star is centered between the top and vertex 1 , or at an angle of $0.5 / n \cdot 360^{\circ}=180 / n^{\circ}$. More generally, the tilt will be $180 \cdot \mathrm{~m} / \mathrm{n}^{\circ}$.
How to tilt the image in the opposite direction? If you switch $\left(J_{1}, J_{2}\right)$ to $\left(J_{2}, J_{1}\right)$ the image will tilt in the opposite direction. Subtracting from \boldsymbol{n} and switching order does not change tilt so that ($\boldsymbol{n}-\boldsymbol{J}_{2}, \boldsymbol{n}-\boldsymbol{J}_{1}$) tilts the same as $\left(\boldsymbol{J}_{1}, \boldsymbol{J}_{2}\right)$ (so $\left(\boldsymbol{J}_{1}, \boldsymbol{J}_{2}\right)$ of $(1,9)$ and $(16,24)$ produce the same image given $\boldsymbol{n}=25$; the only difference is the order in which the static image is drawn).
How can we create similar images? Start with a $\boldsymbol{G}, \boldsymbol{r}$-star you like (where $\boldsymbol{r}<\boldsymbol{G} / 2$). Multiply \boldsymbol{G} by some factor \boldsymbol{k} and use that multiple as $\boldsymbol{n}=\boldsymbol{G} \cdot \boldsymbol{k}\left(25=5 \cdot 5\right.$ or $21=7 \cdot 3$, so $\boldsymbol{k}=5$ on left and 3 on middle and right). This \boldsymbol{k} is used to set $\boldsymbol{J}_{1}+\boldsymbol{J}_{2}$.
Truncated stars: Set $\boldsymbol{J}_{1}+\boldsymbol{J}_{2}=\boldsymbol{r} \cdot \mathbf{k}$ if $\boldsymbol{J}_{1}+\boldsymbol{J}_{2}<\boldsymbol{n}$ or $\boldsymbol{J}_{1}+\boldsymbol{J}_{2}-\boldsymbol{n}=(\boldsymbol{G}-\boldsymbol{r}) \cdot \boldsymbol{k}$ if $\boldsymbol{J}_{1}+\boldsymbol{J}_{2}>\boldsymbol{n}$. (From L-R in Row Two: $1+9=2 \cdot 5 ; 1+5=2 \cdot 3$; and $1+8=3 \cdot 3$, or, to use the alternate version for the left middle image noted above, $16+24-25=(5-2) \cdot 5$.) Note also that if you change from $(1,9)$ to $(2,8)$ you have another truncated 5,2 -star with larger star-tips missing.
Stars with eyelets: Set $\boldsymbol{J}_{1}+\boldsymbol{J}_{2}=(\boldsymbol{G}-r) \cdot \boldsymbol{k}$ if $\boldsymbol{J}_{1}+\boldsymbol{J}_{2}<\boldsymbol{n}$ or $\boldsymbol{J}_{1}+\boldsymbol{J}_{2}-\boldsymbol{n}=\boldsymbol{r} \cdot \boldsymbol{k}$ if $\boldsymbol{J}_{1}+\boldsymbol{J}_{2}>\boldsymbol{n}$. (From L-R in Row Three: $1+14=(5-2) \cdot 5 ; 1+14=$ $(7-2) \cdot 3$; and $1+11=(7-3) \cdot 3$. The alternate version for the left bottom image is $(11,24)$ so, $11+24-25=2 \cdot 5$.) And, just like the truncated stars, change the size of the interior star and eyelets by changing from $(1,14)$ to $(2,13)$.
For both types of images, one can change the size of the truncated tips or eyelets by varying \boldsymbol{k} and \boldsymbol{m}.
Truncated Polygons and Polygons with Eyelets. This analysis extends beyond stars to polygons. Below are examples based on $n=21$, of truncated triangles and 7-gons as well as triangles and 7-gons with eyelets obtained simply by varying $\boldsymbol{J}_{\mathbf{2}}$. The size of the \boldsymbol{G}-gon or \boldsymbol{G}-gram in each instance is easy to determine: it is just $\boldsymbol{G}=\boldsymbol{n} / \mathrm{VCF}$ where we recall from E16.1 that in the double-jump setting, VCF $=\operatorname{GCD}\left(n, J_{1}+J_{2}\right)$.
A more general comparison. The table shows all 40 truncated and eyelet images for $\boldsymbol{n}=60$ and $\boldsymbol{J}_{\boldsymbol{1}}=1$. The same stars and polygons occur in (τ_{2}, J_{2}) pairs with $J_{I_{2}+E} J_{2}=\boldsymbol{n}-2 \cdot \boldsymbol{J}_{1}$ if VCF >1. In this instance, the jump level r of the $\boldsymbol{G}, \boldsymbol{r}$-star is given by $r=\left(\boldsymbol{J}_{1}+\boldsymbol{J}_{2}\right) /$ VCF. Given $\boldsymbol{J}_{1}=1$, truncated stars have $\boldsymbol{J}_{1}+\boldsymbol{J}_{2}<\boldsymbol{n} / 2$, and eyelet stars require $\boldsymbol{J}_{1}+\boldsymbol{J}_{\mathbf{2}}>\boldsymbol{n} / 2$ to create the eyelets.
It is worth watching the Sequence Player for each version, just by varying \boldsymbol{J}_{2}. The porcupine images (with $\boldsymbol{P}=$ Lines $/ 2 \pm 1$ or 2) are Needle Fans, see E16.7. One example is this 1230 -Line 15,4 Needle fan ($60,41,613, \mathrm{~J}(1,43))$.

Truncated \& Eyelet Images: $n=60, J_{1}=1$						
${ }_{T} J_{2}$	VCF	$\boldsymbol{G}=60 / \mathrm{VCF}$		Common name		${ }_{E} J_{2}$
2	3	20				56
3	4	15	15	-gon		55
4	5	12	12		dodecagon	54
5	6	10	10	-gon	decagon	53
7	4	15	15,2	-star		51
8	3	20	20,2	-star		50
9	10	6		-gon	hexagon	49
11	12	5	5	-gon	pentagon	47
13	2	30	30,7	-star		45
14	15	4	4	-gon	square	44
15	4	15	15,4	-star		43
17	6	10	10,3	-star		41
19	20	3		-gon	triangle	39
20	3	20	20,7	-star		38
21	2	30	30,11	-star		37
23	12	5	5,2	-star	pentagram	35
24	5	12	12,5	-star		34
25	2	30	30,13	-star		33
26	3	20	20,9	-star		32
27	4	15	15,7	-star		31
trunc	ated	${ }_{T}{ }_{2}$	${ }_{E} \mathrm{~J}_{2}=$	$n-2$	with ey	yelets

