A Counting Squares Challenge Question

This image is the VF from the zig-zag truncated pentagrams image sequence discussed here, if the original $\boldsymbol{n}=25$ is changed to $\boldsymbol{n}=20$, in which case, VCF $=5$ so the image has 90° rotational symmetry and there are 240900 -line images in the new image sequence. This VF has a number of rectangles as a result but some of them are also squares. The question is: How many squares are in the image?

3 Hints: 1. You should be able to see a 5×5 square in this image (connecting vertices $3,8,13$, and 18) so certainly that is included. But there $3 \times 3,2 \times 2$ and 1×1 squares that also must be counted. 2. To avoid double counting, you should start by noting a "distinguished vertex" (you have four choices here: lower left, lower right, upper left or upper right) and only count based on that. 3. To be a square, at least one of the opposing sides must have opposing vertices that are on a diagonal of the 20-gon (i.e., on one of the lines connecting vertex \boldsymbol{a} to vertex $\boldsymbol{a}+10$ for $0 \leq \boldsymbol{a}<10$) which in this case means on 3-13 or 8-18.

