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Abstract 

Electronic string art is algorithmic art in 

which images change instantaneously as 

users change parameters of the model. 

This interactive play allows users to test 

hypotheses even if those hypotheses are 

only incompletely understood. The 

Sequence Player mode increases the 

dynamism involved in such play and 

hence increases the likelihood that the 

user will test additional hypotheses. Such 

purposeful play leads to learning, even if 

that learning is informal in nature. 

1. Background 

Electronic String Art, ESA, simulates 

traditional string art which creates 

intricate patterns based on a simple 

counting rule (connect every 7th nail with 

string) on a closed set of vertices based 

on four parameters: n and J create the 

n,J-star vertex frame, VF; S is the 

number of equally spaced endpoints 

(think nails) on each line of the VF, and P 

is the counting rule using these endpoints 

to connect lines in the final image [1]. 

Two electronic modalities of image 

creation are available, Excel, and a web 

version developed by Liam Myles [2]. 

These basics are laid out in [3] in which I 

argued that ESA can be used as an 

educational resource up and down the K-

12 curriculum.  

Due to the simplicity of the underlying 

model, ESA can be used as a teaching 

tool, or more generally as an informal 

learning resource. The four parameters 

can be adjusted using up and down 

arrows which allows even young users 

the ability to play and see what happens. 

This discovery process is consistent with 

Stein’s Triex: Explore, Extract, Explain 

view of how one can more deeply teach 

and understand mathematics [4].  

An open question is how artificial 

intelligence, AI, will change the nature of 

education: What should be taught and 

how, as well as what needs to be 

understood to be a productive citizen in 

this rapidly changing world? How will we 

maintain our human imprint in a 
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technologically assisted world?  

Two themed issues of the Bulletin of the 

American Mathematical Society (New 

Series), April and July 2024, examine 

how AI technology is likely to affect the 

work of research mathematicians. In one 

article, Davis notes that despite progress 

on many fronts, AI has, to this point, 

failed to surmount the intricacies of 

elementary mathematical word problems 

[5]. As U.C. Davis Emeritus Professor 

Don Chakerian stated in email discussion 

on this topic [6]: “The article by Davis 

shows how children can outstrip the most 

powerful AI systems we have now in 

dealing with very elementary word 

problems. You could mention the even 

greater contrast in the creativity of 

children in making aesthetic judgments 

regarding visual figures and patterns. 

Machines calculate, but humans 

evaluate. Machines not only lack 

creativity, but also a sense of play and 

recreation!” 

The present paper focuses on simple 

regular polygons and stars. By this we 

mean that the VF will be a triangle, 

square, or a simple n,J-star like a 

pentagram or a 12,5-star, or variations on 

these simple images in the sense that the 

images will have rotational symmetry of 

120°, 90°, 72°, or 30°, for example.  

Regular divisible stars cannot be created 

in ESA due to the continuously drawn 

nature of the ESA images but “close to” 

divisible star images such as the 492-line 

12,3 and 12,4 images in Fig 1 are 

possible. Both are based on a regular 

12,5 VF star. The upper image has three 

“squares” tilted 30° to one another. The 

lower image has four “equilateral” 

triangles tilted 30° to one another. Both 

are readily understood based on how 

close their respective P values are those 

producing a square, P = 492/4 = 123, 

and equilateral triangle, P = 492/3 = 164.  

 

 

Fig 1. Two almost regular 492-line stars 

given n = 12, S = 41, J = 5. Upper 12,3-

star, P = 121; Lower 12,4-star, P = 163.  

The images in Fig 1 are two of 80 distinct 

full density images available given these 

values of n, S, and J. As the counting 

rule P varies for fixed n, S, and J one 

obtains waves of images punctuated by 

images with fewer lines. ESA Sections 

10.2 and 18.5 describe why waves of 

images appear to adjust smoothly as P 
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changes unless the number of lines in 

the image changes in which case the 

image sequence seems to flicker relative 

to surrounding images. Put another way, 

as noted in ESA Section 5.4, the images 

are full density (all subdivisions are used) 

unless SCF = GCD(P,S·n/VCF)  > 1. This 

observation forms the basis for the 

Sequence Player mode to which we now 

turn. 

2. Sequence Player Mode 

One form of dynamism, discussed in [1,3] 

using the Home mode of [2] is how an 

individual image is drawn as a series of 

connected line segments given fixed n, 

S, P, and J. This is the notion of being 

continuously drawn. The present paper 

focuses on a second form of dynamism: 

How do images change as the counting 

rule changes? This can be examined 

manually using Home mode by adjusting 

P, but it is automated in the Sequence 

Player mode. Two additional modes are 

available from [2], Picked Sequences 

provides a library of Sequence Player 

image sequences (click to activate), and 

Spirals is discussed elsewhere [7,8]. 

To avoid the flickering that occurs when 

SCF > 1, all images in a Sequence 

Player sequence are full density, SCF = 

1 (except the Start Points P which can 

have any value of SCF). The Start Points 

P value can be chosen to make a point, 

but if SCF > 1, it will not be shown in 

subsequent image sequence iterations. 

When Speed is at its default value of 

100, approximately 10 images are shown 

per second.  

Regardless of initial Start Points value, if 

n, S, or J changes, P is reinitialized to 1. 

The maximum P is set to n·k·S since the 

maximum number of lines for images in a 

sequence, N, is N = n·k·S/VCF and k is 

the number of jumps in a jump set. The 

number of lines in in the image, N, 

changes because VCF changes as J 

changes. The general rules for lines in 

the VF with jump sets is k·n/VCF with 

VCF = GCD(J,n) and the jump set sum is 

J = J1+J2+…+Jk. In the jump set context, 

SCF = GCD(P,N). 

3. The Total Number of Images 
in a Sequence, T 

Some P values between 1 and N have 

SCF > 1 and therefore are not included in 

an image sequence. Values of P included 

in the image sequence are coprime to N, 

or SCF = 1.  

3.1 The Single Prime Case 

If N has a single prime factor, a, then all 

P from 1 to a-1 are coprime to N as are 

a+1 to 2a-1, and so forth. This implies 

that the total number of full density 

images is T = N·(a-1)/a. Figs 2 through 4 

show examples based on the first three 

primes, chosen because each sequence 

has roughly 500 images. See NOTES for 

a link to each figure’s image sequence. 

 

Fig 2. An image based on powers of 2. 



XXVII Generative Art Conference - GA2024 

 

page 4 
 

Fig 2 has n = 32 but VCF = 8 so one can 

readily see the four-ness in the resulting 

image, due to 90° rotational symmetry. 

This 210 = 1024-line image is a curved-tip 

star [1] because P < S making the four-

jump set pattern (9,19,11,17) easy to 

follow. Note the four different sized 

nested squares outlined as a result. The 

image shown is one of 512 images in the 

sequence because every odd number is 

coprime to 1024, 512 = 1024·(2-1)/2.  

Fig 3 has n = 27 but VCF = 9 so the 

resulting curved tip star image certainly 

exhibits three-ness or 120° rotational 

symmetry. The 9-line VF has an internal 

equilateral triangle and two truncated 

equilateral triangles [7] due the three-

jump set pattern of (6,10,2). This 36 = 

729-line image is one of 486 in the image 

sequence because 486 = 729·(3-1)/3.   

 

Fig 3. An image based on powers of 3. 

Fig 4 has n = 25 but VCF = 5 so the 

resulting image certainly exhibits five-

ness or 72° rotational symmetry. This 

image uses a five-jump set pattern of 

(8,1,25,22,4). Note the middle jump is a 

zero jump [1,3] which is why there is a 

spray of lines at vertices 4, 9, 14, 19, and 

24. This 54 = 625-line image is one of 

500 in the sequence, 500 = 625·(5-1)/5. 

Indeed, P = 312 is the porcupine image 

[1]; note that P = 313 = 625-312 is the 

same static image drawn in reverse.  

 

Fig 4. An image based on powers of 5. 

3.2 There is symmetry about the 
porcupine value of P 

Although there are 500 images in the Fig 

4 image sequence, only half are distinct. 

The P < N/2 and P > N/2 halves are 

always the same images shown in 

reverse order. Seeing the images in 

reverse order may make it appear like 

they are different images, but this is only 

an optical illusion. It is always the case 

that for P < n, P and n-P produce the 

same static image drawn in reverse [1].  

It is worth noting that porcupine images 

have a different look when n is even from 

when n is odd. Fig 5 shows the P = 245 

porcupine image based on the Fig 1 

image sequence. Note the prickly 12,5-

star nature of this image. Fig 6 shows the 

P = 511 porcupine image based on the 
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Fig 2 four-jump set image sequence. The 

Fig 7 triangular porcupine, P = 364, is 

based on the Fig 3 three-jump set image 

sequence.  

 

Fig 5. Porcupine 12,5-star for Fig 1. 

 

Fig 6. Complex porcupine for Fig 2 with 

90° rotational symmetry. 

The similarity between even n Figs 5 and 

6 porcupines and odd n Figs 4 and 7 

porcupines is clear. Since Figs 5-7 are 

based on Figs 1-3, use the links to those 

images at NOTES and change P as 

necessary.  

 

Fig 7. Porcupine image for Fig 3. 

3.3 The General Rule for T 

Suppose N has r distinct primes, r > 1, 

labelled a1, a2, …, ar. Of this number, the 

fraction (a1-1)/a1 are coprime to a1, the 

fraction (a2-1)/a2 of those remaining are 

coprime to a2, and so on. The total 

number of P values that are coprime to 

all r primes, T, is thus: 

  T = N·(a1-1)/a1·(a2-1)/a2·…·(ar -1)/ar   (1) 

We noted above that Fig 1 showed 2 of 

80 possible full density images given n, 

S, and J. N = 12·41 = 492 has three 

prime factors, 2, 3, and 41. Total images, 

T = 160 = 492·(2-1)/2·(3-1)/3·(41-1)/41 

according to Equation (1) but half, or 80, 

are distinct due to symmetry about the 

porcupine value discussed in Section 3.2.  

3.4 Waves of Images 

Sometimes image sequences do not 

appear to morph smoothly as P 

increases. This occurs when there are 

not enough full density images in a 
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sequence, T, but the notion of “enough” 

cannot be crisply defined. Nonetheless, 

we can see why waves are more likely to 

appear smooth if fewer primes are used, 

or if they are larger primes.   

Fig 8 provides four similar images; each 

is an example of polygons in a cycle 

discussed in ESA Section 10.5 [1]. Each 

is a part of an image sequence but 8a 

uses 4 primes, 8b uses 3, 8c uses 2 and 

8d uses 1. The percentage of N (210, 

195, 225, 169 in 8a-8d) used increases 

from 22.9% to 49.2% to 53.3% to 92.3% 

in going from 8a to 8d. If you watch the 

image sequences for each (using the 

links at NOTES), you will see 

smoothness increase in going from 8a to 

8d because 8d has the most images, T = 

156, despite having the smallest number 

of lines per image, N = 169.  

 

Fig 8. 8a-(15,14,53,4), 8b-(15,13,49,4), 

8c-(15,15,56,4), 8d-(13,13,42,4). 

One obtains even smoother image 

transitions if S is a larger prime. Fig 9 

shows the porcupine image in that image 

sequence. This sequence was chosen 

because it has roughly the same N = 185 

and T = 144 as Fig 8 sequences. This T 

is smaller than in 8d, but the sequence 

appears to morph more smoothly 

because the number of endpoints on a 

VF line, S, is 37 rather than 13. Note also 

that Fig 1 morphs smoothly with T = 160 

because S = 41. 

 

Fig 9. A 5,2-star porcupine image. 

4. Elementary Questions 

The 12,5-star image sequence used to 

create Figs 1 and 5 is the default image 

sequence for Sequence Player mode. By 

adjusting J one can readily use this 

image sequence to explain common 

divisors. Reduce J by 1 to 4 and a 

triangle VF results because 12 and 4 

have 4 in common; a triangular image 

results if we skip count by 4s (4, 8, 12). 

Reduce J again and we have a square 

because 12 and 3 have 3 in common; a 

square VF results if we skip count by 3s 

(3, 6, 9, 12). This process can be pushed 

in various ways by varying both J and n 

to examine common factors. For 

example, set J = 2, vary n and watch an 

alternation between n,2-stars, and n/2 

polygons. All of this is done while having 

a mesmerizing image sequence play out 

in the background.   

8a 8b 

8c 8d 
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5. Equilateral Three-ness 

From an educational perspective, the 

best question you can ask is: Can you 

find similar but not identical images to an 

image you find interesting?  

Our interest here is in finding image 

sequences that exhibit 120° rotational 

symmetry or equilateral three-ness. Fig 

10 reduces S from 81 to 27 relative to Fig 

3 so that the image sequences do not 

take as much time to view. Each 35 = 

243-line sequence has 162 images as a 

result.   

 

Fig 10. A sampling of image sequences 

with equilateral three-ness. Each image 

shown is P = 14. Links are Top 10a, 10b, 

Middle 10c, 10d, and Bottom 10e, 10f.  

The first three versions, 10a-10c, have 

inscribed equilateral triangles that include 

vertices of the 27-gon because one of the 

jumps in the jump set is 9 = n/3. Fig 10d 

has three interior VF equilateral triangles, 

Fig 10e has two interior and one 

truncated VF equilateral triangles and all 

three of the Fig 10f VF triangles are 

truncated [7]. Figs 10b and 10c are 

examples of tails and spikes discussed in 

ESA Section 17.3 [1]. Note also that 10d 

and 10e are obtained from 10c by 

adjusting J1 up or down 1 and J2 down or 

up 1 relative to 10c. Doing so changes 

the 0° spike into a 180/27 = 6.67° sharp 

angle according to the inscribed angle 

theorem.  

The image sequences in Fig 10 are not 

exhaustive, but simply are examples of 

some of the possibilities given n = 27 and 

k = 3. Of course, other values of n 

produce similar equilateral three-ness 

images (and different ones), all that is 

required is that n is a multiple of 3 and 3 

= n/VCF. The images in Fig 10 worked 

because VCF = 9 in each case and one 

need only adjust jumps in the jump set to 

find additional versions.  

Equilateral four-ness, or 90° rotational 

symmetry, is similarly easy to obtain. 

One need only have n be divisible by 4 

with 4 = n/VCF. From here you might 

challenge students to create images that 

have 5,2-ness, or 7,3-ness.  

6. Extensions 

As you adjusted jumps in a three-jump 

set you may have run across situations 

where a scalene triangle results. This 

happens whenever the sum of jumps is a 

multiple of n. This forms the basis for 

obtaining “closest to equilateral” triangles 

when n is not divisible by 3.  

Figs 11a and 11b show the smallest n 

isosceles, but not equilateral, porcupine 
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images where the difference in angles is 

less than 1° (the difference is 180/181° 

and 180/182°, respectively). The apex 

angle of 11a is greater than 60° and 11b 

is less than 60° but both are virtually 

indistinguishable from (3,81,121,1).  

 

Fig 11. Two isosceles porcupines.  

7. Summary 

Electronic String Art combines art and  

mathematics in a way that allows users 

to understand mathematics more deeply, 

simply by adjusting parameters and 

watching what happens. The Sequence 

Player mode of Playing with Polygons 

provides a dynamic complement to the 

Home mode that helps users understand 

how individual images emerge as a result 

of applying a simple counting rule. Both 

modes were created for independent 

explorations, but both are useful in more 

formal K-12 classroom settings to 

support teaching of various topics in a 

visually appealing way.  

Notes 

Each link takes you directly to the web 

version [2] set to that figure in Sequence 

Player mode. Links to Figs 1-9 note the 

number of lines in the image, N, and the 

number of images in a sequence, T and 

starting P as N, T, P. Figs 10 and 11 note 

the jump set associated with each panel.  

Fig 1,492, 160, 121.  Fig 2,1024, 512, 37. 

Fig 3,729, 486, 47.    Fig 4,625, 500, 312.  

Fig 8a,210, 48, 53.    Fig 8b, 195, 96, 49. 

Fig 8c,225, 120, 56.  Fig 8d,169, 156, 42.  

Fig 9,185, 144, 92. 

Fig10a (6,9,3).         Fig 10b (9,26,1). 

Fig 10c (9,16,11).      Fig 10d (10,15,11). 

Fig 10e (8,17,11).      Fig 10f (7,21,8). 

Fig 11a (60,61,60).    Fig 11b (61,60,61). 
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