The Ultimate Zig-Zag Image

The image to the right shows $\boldsymbol{P}=19$, for $\boldsymbol{n}=48$ and $\boldsymbol{S}=23$. The key here is the jump set pattern which can be seen given this curved-tip star ($\boldsymbol{P}<\boldsymbol{S}$). There are 23 jumps in all, with jump i, \mathbf{J}, created according to the Zig-Zag Rule:

Zig-Zag Rule: If \boldsymbol{i} is odd, $\boldsymbol{J}_{\boldsymbol{i}}=\boldsymbol{i}$, if \boldsymbol{i} is even, $\boldsymbol{J}_{\boldsymbol{i}}=\boldsymbol{n} \boldsymbol{i}$.
(Reverse odd and even and the zig-zag becomes positively sloped.) The resulting vertex frame, VF, jumps back and forth in zig-zag fashion, much as was done elsewhere:

$$
\begin{aligned}
& \text { Jump pattern: } \quad 1,46,3,44, \ldots, 21,26,23 \\
& 48 \text {-gon vertex: } 0,1,47,2,46, \ldots, 11,37,12
\end{aligned}
$$

The sum of jumps in the jump set is 540 which means that $\mathrm{VCF}=12$ and the jump set ends one quarter of the way around the circle at vertex $12=\operatorname{MOD}(540,48)$. This means that there is 90° rotational symmetry and a total number
 of lines $\mathbf{N}=4 \cdot 23^{2}=2116$ per full density image.

Given prime factors 2 and 23 of \mathbf{N}, the image sequence has $\mathbf{T}=1012=2116 \cdot(2-1) / 2 \cdot(23-1) / 23$ full density images using the rule discussed here. Half of these images are distinct because they are symmetric about the porcupine $\underline{P=1057}$.

Given this number of images, the sequence takes about 2 minutes to watch at the default speed. It provides a very nice sequence of waves but one of the things that happens very quickly is that the image appears to be a cross with webbed areas outside the cross at the end of the first wave. A bit of exploration produces this stunning observation. When $\boldsymbol{P}=$ 46 , one obtains the 46 -line image on the left (since SCF = 46); only vertices of the 48 -gon are used ($\boldsymbol{P}=2 \boldsymbol{S}$). (For reference, the first line of the image from vertex 0 to 47 is shown in orange here using the Home mode.) When $\boldsymbol{P}=45$, the 2116 -line image on the right appears (and $\boldsymbol{P}=47$ is very similar). Similar but not quite the same things happen when \boldsymbol{P} is near additional multiples of 46 . As \boldsymbol{P} increases across these multiples, the size of the internal square increases in size.

Why the waves wash in and out. If you simply let the overall sequence play out a few times you will notice the beating nature of the image sequence. If you take the time to count, there are 46 waves with 22 images per wave, 1012 = $22 \cdot 46$. Since $\boldsymbol{S}=23$, there are 11 odd values (meaning different full density images) on each line of the VF. Due to the zig-zag nature of the VF, values near even multiples of 23 look a lot more like one another, than values near odd multiples of 23.

Put another way, $\boldsymbol{P}=113=5 \cdot 23-2$ at left is in the middle of the third wave but $\boldsymbol{P}=137=6 \cdot 23-1$ is at the end of that wave. Notice the similarity between $\boldsymbol{P}=19$ above and the one on the left, versus $\boldsymbol{P}=45$ and $\boldsymbol{P}=113$. There are three central squares before the zig-zagging starts with $P=113$, but only 1 with $P=19$, nonetheless, the crossed nature of the zig-zags seems quite similar. The same goes for the start and end of other multiples of 46 . The first half of each wave moves toward greater zig-zag visibility, the second half toward less.

The two final images to consider are the near porcupine/4 $=\boldsymbol{P}=263$ at left, and the near porcupine $/ 2=\boldsymbol{P}=527$ at right.

