An Introduction to Analyzing 7-Line Single-Step Images

This chapter has been created to explore more fully when one could obtain an image that is similar to E8.4 Three ShapeShifting Triangles, 3SST, (30,19,163,13). Some of these explorations occurred prior to March 2023 and are included in Electronic String Art. Very few similar images were found, but see sections E8.6, E9.5, and E12.8.

This chapter uses ideas set forth in E10.1 which focuses on functionally linking $\boldsymbol{n}, \boldsymbol{S}, \boldsymbol{P}$, and \boldsymbol{J}. In this instance, we focus on creating a counting rule, \boldsymbol{P}, that ends up close to the top after 7 lines are drawn. Call this The 7-Line Generator Function:

The 7-Line Generator Function: $\boldsymbol{P}=$ ROUND $(\boldsymbol{k} \cdot \boldsymbol{n} \cdot \mathbf{S} / 7,0)$ for $\boldsymbol{k}=1,2$, or 3.
CLAIM: This \boldsymbol{P} produces a $\boldsymbol{7}^{\text {th }}$ endpoint $\boldsymbol{E}=7 \boldsymbol{P} \cdot \boldsymbol{k} \cdot \boldsymbol{n} \cdot \boldsymbol{S}$ that is in one of 7 locations on the vertex frame: $-3 \leq E \leq 3$.

The reason is straightforward. \boldsymbol{P} is chosen so that after either 1,2 or 3 times around ($\boldsymbol{k}=1,2$, or 3), the total number of subdivisions counted is as close as possible to a total of $\boldsymbol{n} \cdot \mathbf{S}, \mathbf{2} \cdot \boldsymbol{n} \cdot \mathbf{S}$, or $\mathbf{3} \cdot \boldsymbol{n} \cdot \mathbf{S}$. Seven outcomes for \boldsymbol{E} are possible:

An example using $\boldsymbol{n}=10$ and $\boldsymbol{k}=1$						
s	$E=$					
		nS/7	P	78	P-nS	$n S \bmod 7$
7	70	10	10	70	0	0
8	80	11.4	11	77	-3	3
9	90	12.9	13	91	1	6
10	100	14.3	14	98	-2	2
11	110	15.7	16	112	2	5
12	120	17.1	17	119	-1	1
13	130	18.6	19	133	3	4

$$
\begin{array}{llll}
\boldsymbol{E}=0 \text { if } 0=\boldsymbol{k} \cdot \boldsymbol{n} \cdot \boldsymbol{S} \bmod 7 & \boldsymbol{E}=-1 \text { if } 1=\boldsymbol{k} \cdot \boldsymbol{n} \cdot \boldsymbol{S} \bmod 7 & \boldsymbol{E}=-2 \text { if } 2=\boldsymbol{k} \cdot \boldsymbol{n} \cdot \boldsymbol{S} \bmod 7 & \boldsymbol{E}=-3 \text { if } 3=\boldsymbol{k} \cdot \boldsymbol{n} \cdot \boldsymbol{S} \mathrm{mod} 7 \\
& \boldsymbol{E}=1 \text { if } 6=\boldsymbol{k} \cdot \boldsymbol{n} \cdot \boldsymbol{S} \bmod 7 & \boldsymbol{E}=2 \text { if } 5=\boldsymbol{k} \cdot \boldsymbol{n} \cdot \boldsymbol{S} \bmod 7 & \boldsymbol{E}=3 \text { if } 4=\boldsymbol{k} \cdot \boldsymbol{n} \cdot \boldsymbol{S} \mathrm{mod} 7
\end{array}
$$

An example is shown in tabular form to the right using $\boldsymbol{n}=10$ and $\boldsymbol{k}=1$. The ROUND function takes the closest whole number. When $\boldsymbol{n} \cdot \boldsymbol{S} / 7$ is a bit bigger than the whole number, the number is rounded down (for example, \boldsymbol{P} is rounded down from 11.4 to 11 when $\boldsymbol{S}=8$, so the $7^{\text {th }}$ endpoint at 77 is just before the top at $\boldsymbol{n} \cdot \boldsymbol{S}=80$, so $\boldsymbol{E}=-3$). Conversely, when $\boldsymbol{n} \cdot \boldsymbol{S} / \mathbf{7}$ is a bit smaller than the whole number, the number is rounded up (for example, \boldsymbol{P} is rounded up from 18.6 to 19 when $\boldsymbol{S}=13$, so the $7^{\text {th }}$ endpoint at 133 is just past the top at $\boldsymbol{n} \cdot \boldsymbol{S}=130$, so $\boldsymbol{E}=3$). In this instance, the 7 images above are all 7 -gons or close to 7 -gons. If $\boldsymbol{k}=2$, the underlying image is a 7,2 -star and if $\boldsymbol{k}=3$, the underlying image is a 7,3 -star.
The actual 3SST $\boldsymbol{P}=163$ value is consistent with this \boldsymbol{P} Generator Equation: Given $\boldsymbol{n}=30, \boldsymbol{s}=19$ and $\boldsymbol{k}=2$, we have $\boldsymbol{P}=163=\operatorname{ROUND}(1140 / 7,0)$ and $7 \boldsymbol{P}=1141$ or 1 past the top of the image since $6=2 \cdot 30 \cdot 19 \bmod 7$.

The first 7 lines of 3SST are shown here. Notice that the $7^{\text {th }}$ endpoint is 1 past the top, $1=7 \boldsymbol{P} \bmod n S$.

All images in this chapter use this \boldsymbol{P} function, or a generalization of this \boldsymbol{P} function based on 0 remainder images other than 7 lines long, to create images.

In the exploration process, other image types were uncovered that are not part of ESA, but which are worthy counterparts to 3SST.

Other Sections. The discussion proceeds on multiple fronts. Although zero remainder images are only 7 lines long, they provide a template for how the images morph as parameters (typically \boldsymbol{S} and hence \boldsymbol{P}, for fixed \boldsymbol{n} and \boldsymbol{J}) change. We therefore start by

$$
\begin{array}{llr}
(n, S, P, J) & & \\
(30,19,163,13) & \quad & \text { 19 lines/cycle } \\
570 \text { lines }
\end{array}
$$

