Composite G-Line Images

The \boldsymbol{G}-line generator function produces values of \boldsymbol{P} that are within $\boldsymbol{G} / 2$ subdivisions of the top of the image after \boldsymbol{G} lines are drawn. $\boldsymbol{P}=\operatorname{ROUND}(\boldsymbol{k} \cdot \boldsymbol{n} \cdot \boldsymbol{S} / \mathbf{G}, \mathbf{0})$ for $\boldsymbol{k} \leq \boldsymbol{G} / \mathbf{2}$.

If \boldsymbol{G} is composite (for example, $\boldsymbol{G}=10$) and one factor of $\boldsymbol{G}(2)$ is a factor of $\boldsymbol{n}(14)$ and the other (5) is factor of $\boldsymbol{S}(15)$, then a remainder zero image (denoted $0 \boldsymbol{r} 10$) can be obtained using all \boldsymbol{n} vertices if $\mathrm{VCF}=1$. If $\boldsymbol{J}=3$ and $\boldsymbol{k}=1,(14,15,21,3)$ is the $0 r 10$ oval 10,3 -star at left. Change \boldsymbol{S} to get morphed versions of this image. Two \boldsymbol{S} between 15 and 20 use every subdivision endpoint since $\operatorname{SCF}=1 ; \boldsymbol{S}=18$ and 19 . At middle, $(14,18,25,3)$ has $10^{\text {th }}$ segment endpoint is at -2 because $10 \boldsymbol{P}$ $=250$, 2 less than 252 . At right, $(14,19,27,3)$ has $10^{\text {th }}$ segment ends at +4 because $10 \boldsymbol{P}=270,4$ more than 266 .

Each of these images is a $\boldsymbol{k}=1$ value of \boldsymbol{P}. If \boldsymbol{S} is a multiple of 5 , the same $0 \boldsymbol{r} 10$ oval 10,3 -star occurs. When $\boldsymbol{S}=16, \boldsymbol{P}=22$ and SCF $=2$; the $10^{\text {th }}$ line is not smallest-step. (Indeed, the $51^{\text {st }}$ endpoint ends at subdivision endpoint 2). But if $\boldsymbol{S}=17$, then $\boldsymbol{P}=24$, SCF $=2$ and the $10^{\text {th }}$ line is smallest-step and ends at subdivision point 2 because $10 \boldsymbol{P}=240$ and $\boldsymbol{n S}=238$.

When $\boldsymbol{k}=2$ the Or10 image ($\boldsymbol{P}=42$) is a pentagram and when $\boldsymbol{k}=4$ the Or10 image $(\boldsymbol{P}=84)$ is a pentagon. Both images use every other vertex of the oval 10,3-star.

The $\boldsymbol{k}=3$, Or10 oval decagon at left morphs into middle ($10^{\text {th }}$ segment ends at $-2=10 \cdot 63-3 \cdot 224$) and right ($10^{\text {th }}$ segment ends at $-4=10 \cdot 71-3 \cdot 238)$. The next two values of $\boldsymbol{S}(18$ and 19$)$ have $S C F=4$ and $\operatorname{SCF}=2$, respectively. The $\boldsymbol{S}=18$ version is smallest-step of length 21 at subdivision endpoint 84 , and the $\boldsymbol{S}=19$ version is smallest-step of length 10 at endpoint 2 .

Each of the above was based on $\boldsymbol{J}=3$. When $\boldsymbol{J}=1$, and $\boldsymbol{k}=1$ the $0 r 10$ image is an irregular 10,1-star (on a $14,1-\mathrm{VF}$) which turns into a 5,1 -star for $\boldsymbol{k}=2$; a 10,3 -star for $\boldsymbol{k}=3$; and a $5,2-$ star for $\boldsymbol{k}=4$. $\boldsymbol{J}=2, \boldsymbol{k}=1$ produces an irregular 5,1-star (on a $7,1-\mathrm{VF}$ since $\mathrm{VCF}=2$); $\boldsymbol{J}=4, \boldsymbol{k}=1$ produces an irregular 5,2 -star (on a $7,2-\mathrm{VF}$ since $\mathrm{VCF}=2$); and $\boldsymbol{J}=6, \boldsymbol{k}=1$ produces an even more irregular 5,2-star (on a $7,3-\mathrm{VF}$ since VCF $=2$). This star has very small feet.

The sole remaining $\boldsymbol{J}<\boldsymbol{n} / 2$ is 5 . This produces additional interesting images. The first shown is $\boldsymbol{k}=1$ which is reminiscent of finger traps with a smaller number of lines. The right image is the $\boldsymbol{J}=5$ counterpart to the right image in the first row.

Next are the $\boldsymbol{k}=3$ images. The middle image is the $\boldsymbol{J}=5$ counterpart to the middle image on the second row. And note that the right image below has SCF $=4$ and the $10^{\text {th }}$ line ends at subdivision endpoint 4.

Note that each of these $0 r 10$ images are composed of two cycles of 5 lines each. Hence all three have both horizontal and vertical symmetry. One final set of images is provided below, based on $\boldsymbol{J}=5$. When $\boldsymbol{k}=2$ and 4 , only the even endpoints are used and we end up with a small 5,1 -star for $\boldsymbol{k}=2,(14,15,42,5)$, and a small 5,2 -star for $\boldsymbol{k}=4,(14,15,84,5)$. Both are shown below and both exhibit obvious connections to polygons and stars in a cycle and to small images.

