Different Images Arise as \boldsymbol{S} Varies Unless S is a Multiple of 7

We know that when \boldsymbol{P} is determined by The 7 -Line Generator Function: $\boldsymbol{P}=\operatorname{ROUND}(\boldsymbol{k} \cdot \boldsymbol{n} \cdot \boldsymbol{S} / 7,0)$ for $\boldsymbol{k}=1,2$, or 3, we obtain images where the $7^{\text {th }}$ line is close to the top (at dots $\pm 1,2$, or 3 on the VF) unless it is at the top. Elsewhere we saw that when \boldsymbol{k} varies and \boldsymbol{S} is a multiple of 7 , the same dots are used. Here we examine what happens as \boldsymbol{S} varies for fixed \boldsymbol{k}.
$\boldsymbol{n}=\mathbf{7} \cdot \boldsymbol{m}$. If \boldsymbol{n} is a multiple of 7 then $\boldsymbol{P}=\boldsymbol{k} \cdot \boldsymbol{m} \cdot \boldsymbol{S}$ and the image will be a regular 7 -gon, 7,2 -star, or 7,3 -star unless \boldsymbol{J} is also a multiple of 7 in which case the image is a single point. The reason is straightforward. Whenever \boldsymbol{P} is a multiple of \boldsymbol{S}, only the vertices of the vertex frame, VF, are used in the final image. As a result, in this context we typically restrict our discussion to those images based on \boldsymbol{n} which are not multiples of 7 .
$\boldsymbol{S}=\mathbf{7} \cdot \boldsymbol{m}$. If \boldsymbol{S} is a multiple of 7 then $\boldsymbol{P}=\boldsymbol{k} \cdot \boldsymbol{n} \cdot \boldsymbol{m}$ and the image will be an irregular, single-cycle, 7 -line figure because the $\boldsymbol{7}^{\text {th }}$ line always ends at the top. These four images are $\boldsymbol{n}=30, \boldsymbol{J}=13, \boldsymbol{k}=2$, with $\boldsymbol{S}=7 \cdot \boldsymbol{m}$ for $\boldsymbol{m}=1-4$ with subdivision dots and VF included. For $\boldsymbol{m}=1, \boldsymbol{P}=60,210$ dots, and SCF $=30$. For $\boldsymbol{m}=2, \boldsymbol{P}=120,420$ dots, and SCF $=60$. For $\boldsymbol{m}=3, \boldsymbol{P}=180,630$ dots, and $S C F=90$. For $\boldsymbol{m}=4, \boldsymbol{P}=240,840$ dots, and $S C F=120$. In each instance, the result is THE SAME IMAGE.

This image was chosen because it represents the archetype image for Three Shape-Shifting Triangles, the godfather of this chapter. Given this situation, an \boldsymbol{S} two smaller than those multiples of 7 will produce a cracked open single-step image which is a twisted version of the image above. The first 7 lines of each is shown, the third is the original 3SST.

What happens as \boldsymbol{S} increases? As \boldsymbol{S} increases, the image is cracked open less (since a subdivision is smaller), but one can readily see the 3SST family relation in the first 7 lines and in the final images (with 150, 360,570, 780 lines) shown next.

If you choose S two larger than 7,14, 21, and 28, you have overly closed versions of 3SST that fill in backward on the VF.

