Reverse Engineering Needles with Shields

Needles with Shields started off with a 23-needles image that was one-time around, but not single-step of a small number of steps. We found single-step of length 7 versions of Needles with Shields by focusing attention on J/n close to 0.5 . Three version were shown based on $\boldsymbol{n}, \boldsymbol{J}$ of $31,15,45,22$, and 59,29 , but additional versions are possible if you simply look including 48,23 , and 53,26 . Each is $3 S S T$ in which J is the largest value smaller than $n / 2$ that is not a multiple of 7 and \boldsymbol{n} is also not a multiple of $7, \boldsymbol{S}=9$, and \boldsymbol{P} is controlled by The 7-Line Generator Function. Of course, these single-step of length 7 images do not occur for all \boldsymbol{n} since, as noted elsewhere, not all \boldsymbol{n} have 3SST base images.

Creating an n-needles version using numbered subdivision endpoints and VF. Suppose you want to create a 21-needles version. The image must have a first line that is almost vertical. The end of the first line should end just above the center of the image on the innermost level, Level 4, given $\boldsymbol{S}=9$ as discussed in E7.1. This \boldsymbol{n} was chosen for three reasons: 1) \boldsymbol{n} is a multiple of 7 so that the resulting image will NOT be single-step of length $7 ; 2$) n is smaller than the smallest version discussed above; and 3) A smaller \boldsymbol{n} makes looking at the green numbers (from E10.2.1) easier to distinguish since there are only $189=21.9$ total endpoints.

We want the endpoint to be close to
(n, S, P, J) the vertical centerline on the $4^{\text {th }}$ level in from vertices of the 21-gon. The numbers suggest 3 possible values: 4 more than 18 (vertex 20), 4 more than 36 (vertex 19) and 4 more than 54 (vertex 18). The images created using these three values of \boldsymbol{P} are shown in the next row, $P=22,40,58$ from left to right. The first line is shown in each instance to focus attention on where the first line ends.
(21,9,40,10)

