Single-Cycle Images use the same Subdivision Dots as \boldsymbol{k} Varies

If \boldsymbol{S} as a multiple of 7 , then the $7^{\text {th }}$ line will end at the top given The 7 -Line Generator Function and the resulting image is a single cycle. As noted elsewhere, this does not depend on what multiple of 7 is under consideration for \boldsymbol{S}. As noted here, when \boldsymbol{J} is "small" relative to $\boldsymbol{n} / 2$, each \boldsymbol{J} produces an irregular 7 -gon or 7 -gram and by varying \boldsymbol{k} between 1 and 3 we cycle between 7 -gons and 7 -grams (we will simply call both $7, \boldsymbol{a}$ without the -gon or -gram or -star here and note that if \boldsymbol{a} $=1$, we have a 7 -gon). For example, with $\boldsymbol{n}=9$ and $\boldsymbol{J}=1$, we cycle between $7,1,7,2,7,3$ as $\boldsymbol{k}=1,2,3$ but if $\boldsymbol{n}=9$ and $\boldsymbol{J}=2$, we cycle between $7,2,7,3,7,1$ as $\boldsymbol{k}=1,2,3$. However, if \boldsymbol{J} is "large" relative to $n / 2$, more complex images emerge. To continue with this \boldsymbol{n}, if $\boldsymbol{J}=4$, we obtain these 7 -line images as $\boldsymbol{k}=1,2$, and 3 with two single-step versions below.

Two points are worth noting. First, the SAME subdivision dots are used in the top three images, just in a different order, just like we saw with the irregular $7, \boldsymbol{a}$-stars discussed here. Using the upper left as the template, the middle uses endpoints $2,4,6,1,3,5,0$ but the right uses $3,6,2,5,1,4,0$ (the end of the first line is noted with a red 1 at middle and right). Second, although bottom row images have about four times the lines, they bear a strong resemblance to middle row images. The upper images are more twisted in the middle row because subdivisions are larger when \boldsymbol{S} is smaller.

