Ecological Insect Management: Concepts & Practices

Seeding the Future October 14-15, 2011

Mary Barbercheck Penn State University meb34@psu.edu

Ecological Insect Management: Concepts & Practices Overview

- Pest Management Goals, Principles and Tactics
- Some ecological background
 - Insects in food webs
 - Bottom-up vs. Top-down Effects
- Bottom-up effects: Cultural practices
- Top-down effects: Biological, Mechanic/Physical, Chemical
- Some resources

Some Goals of Management

- Productivity and beneficial processes
- Improvement in physical, chemical, and biological properties
- Improvement of soil and plant health
- Conservation of beneficial organisms
- Suppression of pests

Principles of Ecologically-Based IPM

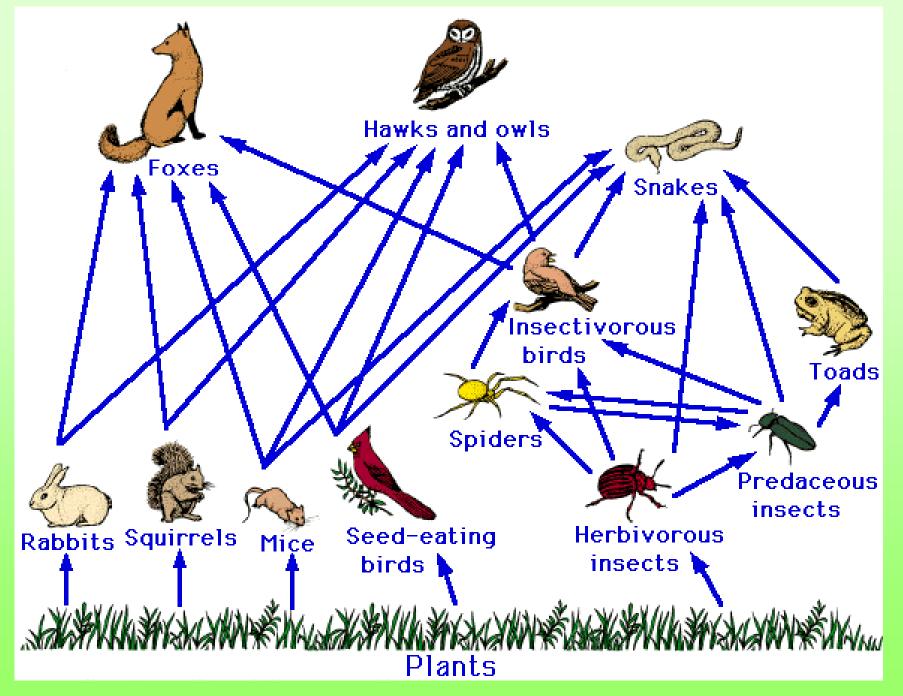
- Cropping system as component of larger ecosystem
- Manage system for productivity and beneficial processes
 - Plant Positive vs. Pest Negative
- Use of decision-making criteria before action (or no action)
- Integration of all suitable control techniques in a compatible manner
- Limited pesticides, only as last resort

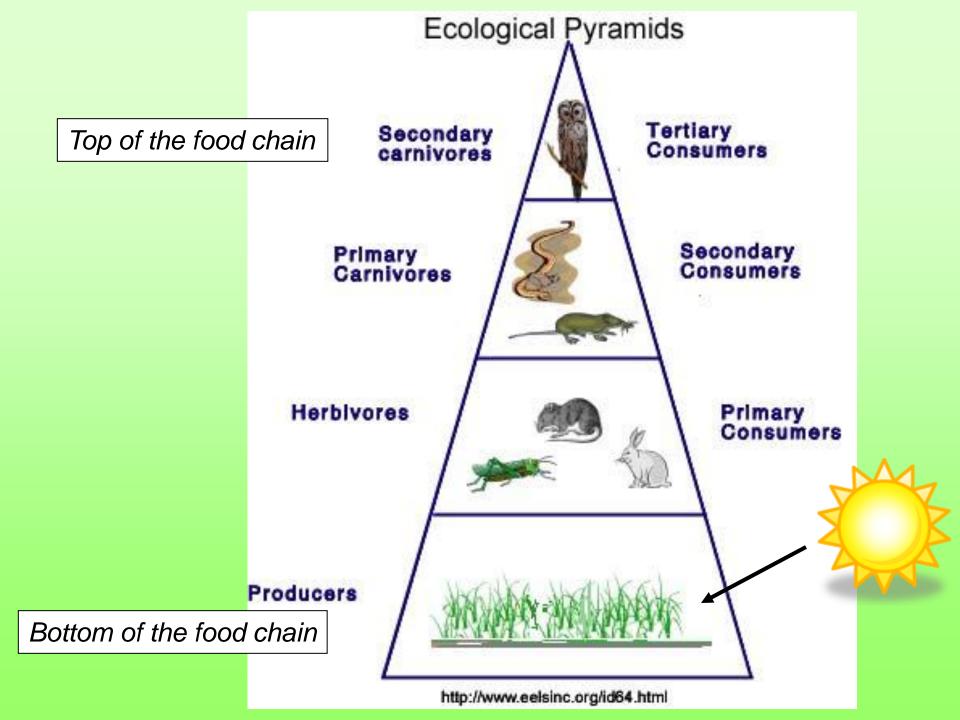
Ladybird Beetle on mustard

Ecologically-Based IPM Tactics

- Monitor: Know your pests and beneficials!
- Keep records
- Cultural
- Biological
 - Conservation
 - Application
- Mechanical/Physical
- Biorational/allowable chemicals

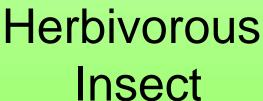
Pheromone Trap


Flea Beetle



Row Cover

Aphid "mummies" after parasitoid emergence



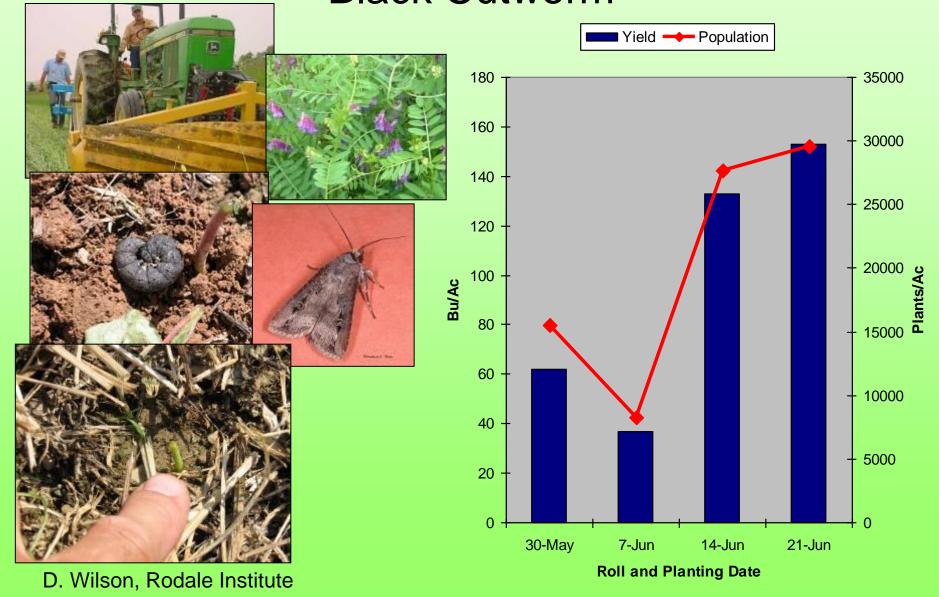
Simple Food Chain From an Insect's POV

Top

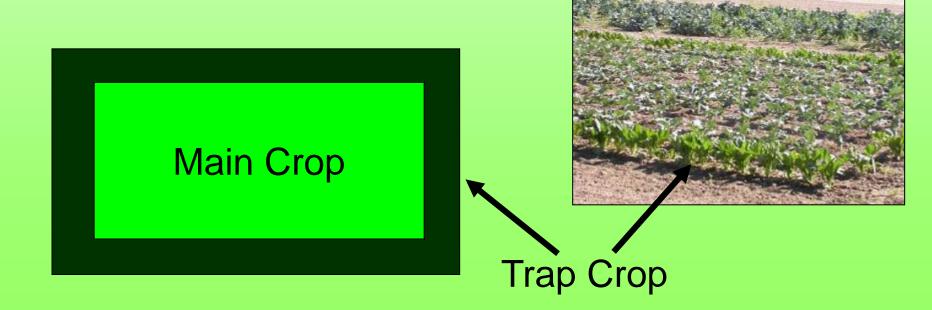
The world is green – why?

"Bottom-up" Factors

- Plant quality
- Primary nutrients (e.g., carbohydrates, lipids, proteins, and nucleic acids)
- Plant defenses
 - Mechanical/Structural
 - Silica, lignins, wax
 - Trichomes
 - Biochemical: constitutive and induced
 - 2° metabolites
 - Digestibility reducers: Tannins
 - "Toxins": alkaloids, cyanogenic glycosides and glucosinolates, terpenoids, and phenolics


Bottom-Up Factors: Cultural Practices

- Site selection
- Appropriate plant species and cultivars
- Insect and disease-free planting materials
- Pest/disease resistant or tolerant varieties
- Planting date
- Soil and fertility management
- Diversity
 - Crop rotation
 - Species: Multiple cropping, Interplanting, Intercropping, Strip cropping, Trap cropping
 - Genetic diversity
- Sanitation


Barley undersown with red clover

Cover Crop Management x Planting Date x Black Cutworm

Bottom-Up Factor: Trap Cropping

- Plant a preferred crop around the entire main crop, so that the trap crop encloses the main crop.
- Incoming pests are intercepted and concentrated where they can be killed.
- Trap crop must be present before or at the same time as the main crop to intercept pests.
- Treat trap crop as soon as pests appear

Bottom-up Factors: Induced Resistance

Induction of Systemic Acquired Resistance

Systemic Acquired Resistance **Plant Growth Promoting** Rhizobacteria Travis and Gugino

Bottom-Up Effect: PGPR-Cucumber Beetles-Bacterial Wilt

- Beetles prefer plants high in bitter cucurbitacin
- PGPR reduce bitter cucurbitacins in cucurbit plants
- Plants less attractive to beetles
- Less feeding damage, bacterial wilt

Bottom-Up Effects Soil Fertility and Pest Management

- Organic (poultry manure) and synthetic fertilizer on cabbage insect pests
- Cabbage aphid (specialist) more abundant with manure
- Green peach aphid (generalist) more abundant with synthetic fertilizer
- Diamondback moth (specialist) more abundant and more eggs with synthetic fertilizer plants
- Nitrogen concentration was greater for conventionally fertilized
- Glucosinolate concentrations were up to three times greater on cabbage plants grown with manure

http://www.dgsgardening.btinternet.co .uk/aphidcabbage.jpg

http://images.wikia.com/gardener/images/3/3a/Broccoli_Diamond-Back_Moth_Caterpillar.jpg

The world is green – why? "Top-Down" Factors

- Predators during development consume many insects
 - Predatory mites,
 ground beetles,
 predatory bugs,
 spiders, daddylonglegs,
 centipedes

Mesostigmatid mite

Damsel Bug

Spider

Carabid beetle

Natural Enemies: "Top-Down"

Factor

- Parasitoids during development consume one insect
 - parasitoid wasps,
 tachinid flies
- Pathogens cause disease
 - fungi, bacteria,
 viruses, protozoa,
 nematodes

Parasitoid wasp

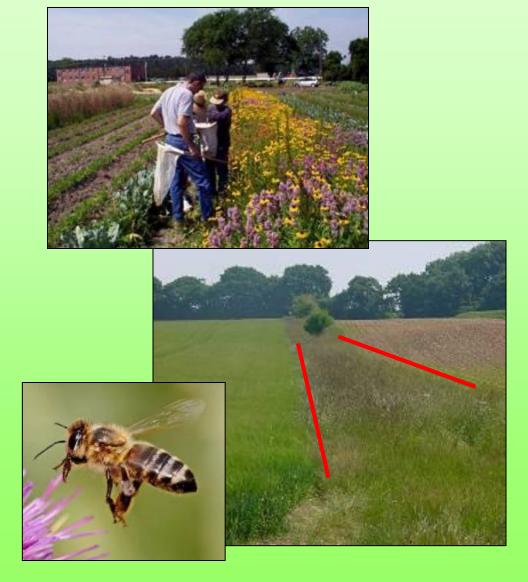
Entomopathogenic nematodes

Entomopathogenic fungi

Biological Control

Exploitation of natural enemies to hold pest below economically damaging levels

- Conservation
 - Improve environment for existing beneficial organisms
- Augmentative & Inundative
 - Purchase and release
 - Usually not long-term
- Classical
 - Imported natural enemy
 - Long-term to permanent


Pediobius wasp on Mexican Bean Beetle

Aphid "mummies" after parasitoid emergence

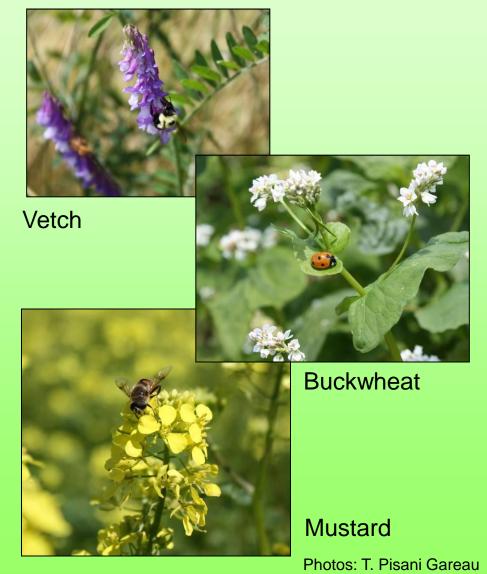
Conservation Biological Control

- Goal: Improve environment for beneficial organisms and processes
- "Farmscaping": provide resource plants or habitats, e.g.,
 - diversity in space and time
 - cover crops
 - refuge strips of flowering plants
 - beetle banks or grassy drive lanes
 - pollen and nectar resources required by many insect natural enemies

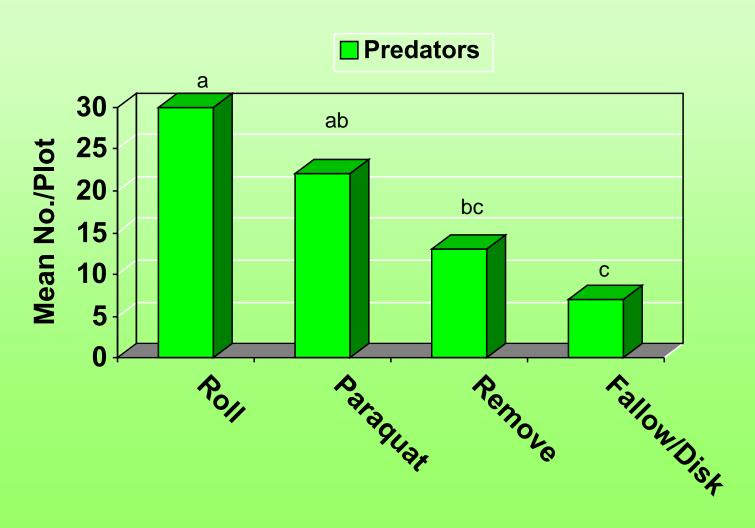
Above-ground Dispersal of Beneficial Arthropods

Low Dispersion - (tend to s tay in field)	Medium Dispersion (forage 1/4 mile)	High Dispersion (forage > 1/4 mile)
Ground Beetles (Carabids)	Most Parasitoid W asps	Syrphids (Hover Flies)
Ladybird Beetles (when	Predatory Wasps - Paper	Dragonflies, Tachinid Flies
happy)	Predatory Bugs	Larger Parasitoid Wasps
Smaller Parasitoid Wasps		

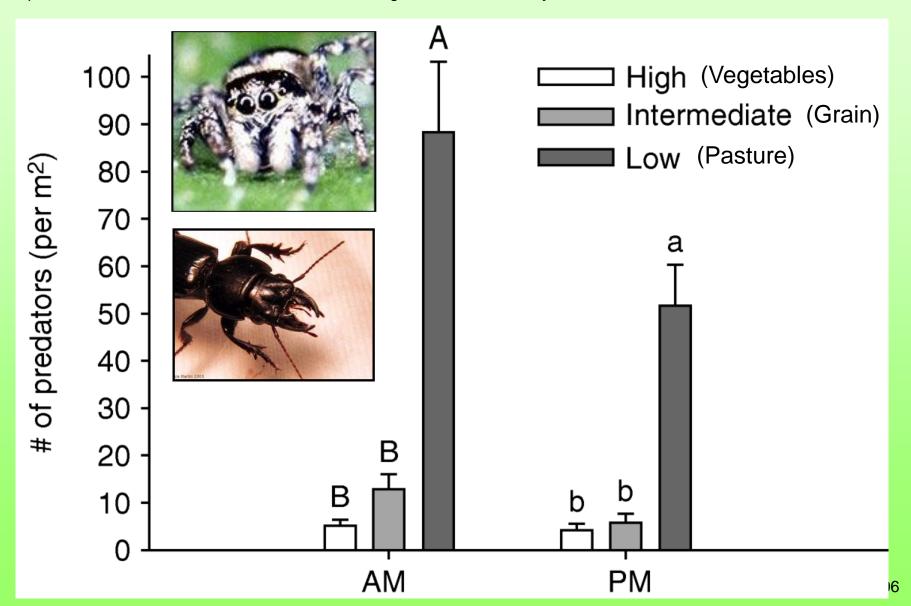
Syrphid Fly



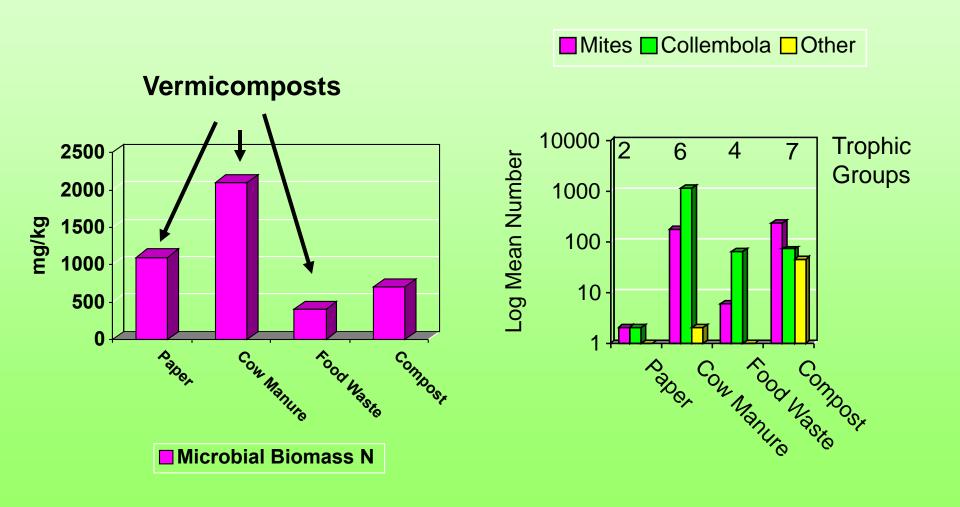
Big-eyed bug


Cover Crops and Pest Suppression

- Cover crops can enhance numbers of soil organisms and cause shifts in the community
- Add diversity to system
- Add food resources for beneficial insects – pollen and nectar
- Residue creates habitat for predators
- Compete with weeds


Effects of Cover Crop Rye Management in Reduced Tillage Corn

Clark et al. 1993. J. Entomol. Sci. 28: 404-416


Effect of Management Intensity on Arthropod Predators

Lundgren, J. G., et al. 2006. The influence of organic transition systems on beneficial ground-dwelling arthropods and predation of insects and weed seeds. Renewable Agriculture and Food Systems 21: 227–237.

Effect of Compost Type on Microbial Biomass N and Soil Arthropods

Gunadi et al. 2002. Eur. J. Soil Biol. 38:161-165

Summary: Management for Conserving Pest Suppression

- Continuous resources
 - e.g., hay, perennial crops, mulch, cover crops
- Plant diversity
 - e.g., refuge strips, weedy fields, polycultures, cover crops
 - Rotate crops to interupt pest cycles
- Reduce physical & chemical disturbance
 - e.g., woodlands/orchards, grasslands, reduced tillage, refuges, perennial crops or cover crops
 - Reduce use of biocides

Mechanical and Physical Approaches

- Tillage
- Flaming
- Flooding
- Soil solarization
- Row covers
- Mulching
- Traps

When all else fails... considerations for pesticide use

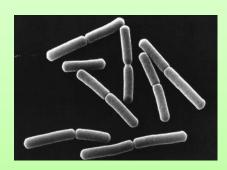
- Substitution vs "Holistic" Management
- Organic Systems Plan: How and when you will react to a pest outbreak
- What quality does your market require?
- Decide in advance your 'action threshold'
- Where possible, use biological controls
- Know your organic pesticide choices: what's allowable, what's labeled, what works, cost

Flea beetle

European Corn Borer

Considering Beneficials When Using Chemicals

- Can be used therapeutically (in contrast to preventively)
- Short half-life
- Selective for specific pests or life stages of pests
- Low environmental exposure, e.g., baits
- Low volume application rates
- Applied when beneficials not active or present


Biorational "Chemicals": Microbial Control

Plant Disease

- Bacillus subtilis (Kodiak)
- B. pumilus (Sonata)
- Trichoderma harzianum (RootShield, PlantShield)

- B.t. var. kurstaki
- Beauveria spp. (Mycotrol)
- Insect viruses

B. subtilis

Insect Virus

Trichoderma harzianum

Beauveria

Biorational "Chemicals": Inundative Biocontrol

- Apply large number of organisms in same manner as a pesticide
- Introduces large numbers of organisms for relatively fast-acting control
- May or may not become established

Some Allowable Pesticides in Organic Systems

(OMRI - 2007)

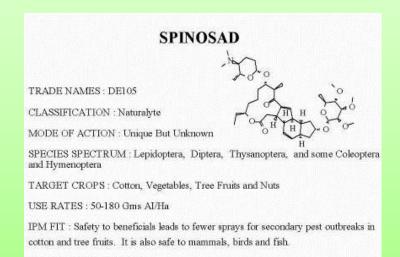
Allowed

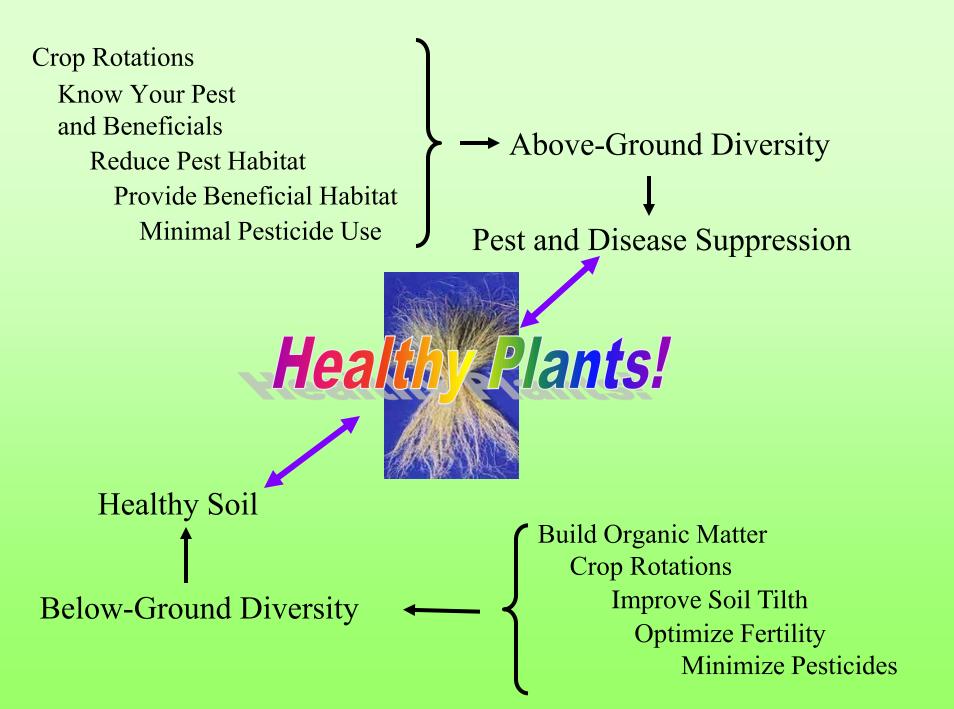
- Insecticidal soap
- Diatomaceous earth
- Bicarbonate (potassium or sodium)
- Spinosad (Entrustr)
- Various microbials
- Particle films: bentonite, kaolinite (Surround^r)
- Plant extracts and oils
- Pheromones

Restricted

- Dormant and summer oils (narrow range petroleum, fish, plant)
- Sulfur compounds
- Copper compounds
- Botanicals
 - Pyrethrum (PyGanic^r)
 - Ryania
 - Sabadilla

Example Pesticide Surround WPtm


- Kaolin clay particle film
- Registered on pome, stone and citrus fruits, berries, grapes, and row crop vegetables
- Insects, mites, fungi, bacteria, and environmental stress such as solar effects
- Prevents insect feeding and oviposition
- Approved for organic production


Example Pesticide Entrusttm

http://www.dowagro.com/ca/prod/success.htm

- Spinosad
- Produced by fermentation of bacteria (Saccharpolyspora spinosa).
- Lepidoptera larvae (cabbage looper, army worms, earworm, corn borer, horn worm), thrips and leaf miners
- Labeled for cereal grains, cole crops, corn, tomatoes, okra, peppers, eggplants, leafy vegetables, strawberries, succulent and dry beans and peas, tree nuts, cucurbits, potatoes, turf and ornamentals

"TRADEMARK OF DOWELANCO

Some Pest Management Resources

- ATTRA, https://attra.ncat.org/pest.html
- Integrated Pest Management: An Overview for Market Growers. http://www.cias.wisc.edu
- Scouting vegetables for pests, K. Delahaut. 2004. http://www.cias.wisc.edu
- Natural Enemies of Vegetable Insect Pests. M. Hoffman and A. Frodsham. www.cornell.edu/ent/biocontrol/manual.html
- Biological Control of Insects and Mites: An introduction to beneficial natural enemies and their use in pest management, D. Mahr et al., 2008. http://learningstore.uwex.edu

Some Resources

- Manage Insects on Your Farm: A Guide to Ecological Strategies. M. Altieri and C. Nicholls. 2005. SAN, www.sare.org
- Natural Enemies Handbook: The Illustrated Guide to Biological Pest Control. M.L. Flint and S. Dreistadt. UC Press. www.ipm.ucdavis.edu
- Greenhouse IPM with an Emphasis on Biocontrols. 2005. PA IPM. http://paipm.cas.psu.edu/
- Resource Guide for Organic Insect and Disease Management. 2005. Caldwell et al. www.nysaes.cornell.edu
- NYS IPM/Cornell Organic Production Guides 2011 http://www.nysipm.cornell.edu/organic_guide/

